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Abstract
Log-Structured-Merge tree-based Key-Value Stores (LSM-
KVSs) are important data storage building blocks in mod-
ern IT infrastructure. However, tuning their performance
involves configuring over 100 parameters, a task typically
done manually or with limited parameters in auto-tuning
mechanisms. This paper explores and answers the following
question: canwe leverage LLM’s understanding of the system
and LSM-KVS components for unrestricted parameter-pool
tuning of LSM-KVS?
LLMs are trained on readily available LSM-KVS source

code, research papers, and open materials enabling the ma-
chines to have human-like understanding. We investigate in-
tegrating Large-Language Models (LLMs) into an automated
tuning framework for LSM-KVS to enhance the tuning ca-
pability and interactivity. Our framework utilizes LLMs to
recommend tailored configurations with calibrated prompts
based on hardware, system, andworkload information. Initial
results demonstrate upto 3X throughput improvements and
an upto 9X reduction in p99 latency across various hardware
and workloads compared to the out-of-box configuration for
the LSM-KVS.

CCSConcepts: • Information systems→Key-value stores;
Database utilities and tools.
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1 Introduction
Log-Structured-Merge tree-based Key-Value Stores (LSM-
KVS) have emerged as a fundamental data storage solution
in the fast-moving digital world. To serve different use cases,
LSM-KVS have been adopted in forms such as RocksDB [9],
Big Table [20], LevelDB [10], HBase [2, 16], and Cassandra
[1]. An LSM-KVS is engineered with multiple critical com-
ponents to deliver high performance, including append-only
log files, in-memory tables, compaction, flush mechanisms,
and Bloom filters. Each component is crucial to improve
throughput, storage efficiency, and speed of data retrieval.
The diverse applications of LSM-KVS [8, 11, 18, 33, 39]

have been adapted to various setups [15, 24, 31]. To adapt
LSM-KVS to diverse applications, popular implementations
offer a wide array of configuration parameters, often exceed-
ing 100 as in RocksDB [9] and HBase [2], to manage LSM-
KVS’ different components. Companies often hire domain
experts who understand and interact with the workloads and
system configurations that set up the performant LSM-KVS
to manage this trade-off for specific workloads [17], storage
devices [19, 41, 42, 44], memory devices [27, 28, 45], and de-
ployments [16, 23, 47]. However, with the increasing number
of parameters, it is challenging for even the code developers
to adequately understand the effect of every option [5, 6, 14].
The growing complexity of LSM-KVS deployments has

spurred the development of automated methods for improv-
ing performance. These approaches fall into two major cate-
gories, Tuning - where exposed configuration parameters
are tuned to improve performance (e.g. RTune [26], Endure
[25], Dremel [48]), and Optimization - where the underly-
ing codebase and configuration parameters are bothmodified
to improve performance (e.g. ADOC [46], AC-Key [43]).
In this paper, we focus on Tuning mechanisms. Recent

studies like RTune [26], K2VTune [30] and Endure [25] lever-
age machine learning and optimization to forecast optimal
configurations for diverse workloads. Similarly, Dremel [48]
and Sami and Eiko [12] propose techniques for online con-
figuration selection and Bayesian optimization, respectively.

However, these approaches only focus on a subset of con-
figuration options (Bloom filters, cache size, etc.) and lack
leveraging knowledge of system resources, and workloads.
The shortcomings of these approaches highlight the need for
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a system-aware auto-tuning methodology that demonstrates
an understanding of the functionality and correlations in
LSM-KVS components. Such a system should be able to tune
parameters as needed - not as provided, hence removing the
current limitations to auto-tuning only subsets of options.
This research explores Modern Large Language Mod-

els (LLMs) for automatic tuning and configuration of LSM-
KVS. LLMs have been trained on large datasets comprising
websites, blogs, articles, and open-source LSM-KVS code
[34, 37, 38]. Given knowledge consumed by modern LLMs,
such a tuning approach possesses the necessary components
for an un-restricted parameter-pool tuning of LSM-KVS.

LSM-KVS and LLMs have different interfaces, the former
based on rigid languages (C++, Java, Python, etc) and the
latter utilizing Natural Language. Exploring Such a system
presents several challenges: 1) A framework that constructs
prompts and facilitates the conversion between code and
natural language, and vice versa. 2) Construct parsers to
handle output from LLM responses that can be in the form of
text, a singular code block, and an interleaving combination
of both. 3) Safeguards for unexpected scenarios (e.g.disallow
of journaling or logging), and detection of unanticipated
responses (e.g. missing options, hallucinated responses).
To explore the LSM-KVS tuning possibilities of using

LLM and address the aforementioned challenges, we present
Elastic Large Language Model-based Tuning (called ELMo-
Tune), a novel LLM-based auto-tuning framework for LSM-
KVS. ELMo-Tune employs a feedback loop comprising mod-
ules dedicated to prompt construction, system resource mon-
itoring, fail-safe management, and interpretation of LLM
output for LSM-KVS tuning. The user is only responsible
for starting it with an expected system workload (e.g., read
intensive, write intensive, and ratios of the same).

We implement a prototype of ELMo-Tune with RocksDB
[9] and the GPT-4 API [4], and the framework is open-
sourced at Github 1 for further investigations and research.
Our prototype can achieve up to 3X improvement in through-
put and 9X improvement in p99 latency within 7 iterations
of tuning compared with the default configurations. We run
ELMo-Tune on a large variety of configurations discussed in
the evaluation section.

2 Background and Motivation
2.1 LSM-KVS and Its Options
Typical LSM-KVS design involves foreground (Get, Put,
Delete, and Scan) and background (flush, Bloom filters, and
compaction) components that share system resources. All
these components introduce numerous (over 100 sometimes
[2, 9]) configuration options to allow adapting an LSM-KVS
in different system/workload scenarios. Each configuration
option affects system behavior in unique ways, often with
dependencies and interactions between different parameters.
1https://github.com/asu-idi/ELMo-Tune

Figure 1. LSM-KVS Stages with Configuration Option

For example, configuring parameters related to compaction,
such as compaction_style and max_background_compactions,
counter-intuitively impacts both - compaction and flush, be-
cause of how configurations affect resource usage.

Adjusting configuration parameters to suit particular hard-
ware, software, and workload scenarios is complex. Not ev-
ery parameter equally influences system performance and
resource consumption; certain ones, especially those associ-
ated with memory management (like write buffer size and
active memory usage), data eviction strategies (such as flush
triggers), and different compaction approaches (for instance,
sub-compaction), may have a more pronounced impact. Fig-
ure 1 depicts the vast array of configuration possibilities in
LSM-KVS systems.

2.2 Tuning and Configuring LSM-KVS
Manual Tuning Traditionally, LSM-KVS have been tuned
manually, relying on the expertise of database administra-
tors. Human experts consider various characteristics of the
system (workloads, hardware, and storage devices) to pro-
vide tuning configurations [5–7]. However, this approach
involves trial-and-error adjustments, consuming valuable
time and resources. This approach, while widely used, in-
curs a high cost every time the system changes and needs
meticulous work in cases of fluctuating read-write patterns.

Auto-Tuning Advances
The drawbacks of manual tuning are well known and

while no methods replace curated manual tuning, recent
advancements in machine learning and optimization algo-
rithms have introduced various auto-tuning techniques for
LSM-KVS.
RTune [26] integrates deep learning and genetic algo-

rithms to forecast optimal configurations by analyzing work-
load patterns. Endure [25] focuses on robust tuning to max-
imize throughput across diverse scenarios. Dremel [48]
adopts a Multi-Armed Bandit model for online configuration
selection, while Sami and Eiko [12] incorporate multi-task
modeling into a Bayesian optimization framework.
Existing studies have limitations: they often cater to a

small subset of options (Bloom filters and Memory buffers

https://github.com/asu-idi/ELMo-Tune
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[29, 35], Merging strategies [21, 22, 36]), and lack of under-
standing of both - system resources and workloads, opting
for a trial-and-error approach [25, 26, 48].

2.3 Motivation - LLMs as ’Experts’
Current automated tools focus on a small subset of options,
lacking flexibility and intractability with the system and
workload. These drawbacks and the lack of transparency
often lead to manual tuning approaches which require sig-
nificant time and resource investments from experts.

To bridge this gap, we explore leveraging Large Language
Models (LLMs) in LSM-KVS tuning. LLMs exhibit a combina-
tion of human-like and machine-like behaviors, exhibiting
a human-like generalized knowledge base and a machine-
like lack of downtime. Modern LLMs are trained on exten-
sive datasets that include sources such as websites, tuning
guides, research papers, and open-source code repositories
like RocksDB, LevelDB, and Cassandra [34, 37, 38]. This train-
ing provides LLMs with a comprehensive understanding of
LSM-KVS systems and their optimization principles.
The objective of this research is to: 1) explore the depth

of understanding that LLMs have of LSM-KVS options; 2)
leverage LLM’s understanding of system and LSM-KVS com-
ponents for an un-restricted parameter-pool tuning system
for LSM-KVS; 3) evaluate the advantages and limitations of
LLM-based tuning framework.

3 Challenges
A Comprehensive Tuning Framework. Designing a sys-
tem that enables tuning beyond a small subset of options is
non-trivial. It necessitates consideration of factors such as
software versioning, hardware specifications, and runtime
usage. These variables must be effectively integrated and
processed by the framework before being relayed to the LLM.
Furthermore, the framework should be able to recognize and
implement changes suggested by the LLM to the LSM-KVS.

Crafting Effective Tuning Prompts.Given the nuanced
nature of language models like ChatGPT, where variations
in phrasing can yield very different outputs, formulating a
performant and effective prompt is one of the major hurdles.
With the abundance of information outputted by LSM-KVS
and input limitations of LLMs, questions like, 1) how much
information is enough? 2) what information first? and 3) how
to formulate the prompt. become increasingly important to
answer.
Handling Natural Language Responses. LLMs com-

municate via Natural Language, while the configuration of
LSM-KVS is through much stricter means - often ‘ini‘ files
or C++ code. This lack of common language needs special
translation and checks that allow the systems to work in the
same framework.
Mitigating LLM Hallucinations and Establishing

Safeguards. LLMs can occasionally produce confident yet

incorrect responses. Therefore, any framework leveraging
an LLM must balance trust in its outputs with a healthy de-
gree of skepticism. Robust safeguards are essential to vet
LLM-generated suggestions before implementation. Further-
more, certain critical options, such as disabling journaling or
I/O flush, should be restricted from modification to prevent
performance degradation.

4 ELMo-Tune
In this section, we present Elastic Large Language Model-
based Tuning (ELMo-Tune). We design ELMo-Tune to over-
come the above challenges and with two major design goals,
1) Allow tuning of all options available for the LSM-KVS, 2)
A framework that is flexible to combinations of workloads,
hardware, LSM-KVS versions, and storage devices.

4.1 LLMs: Beyond the Subset Paradigm
Large Language Models can be viewed as advanced predic-
tion systems that have been trained on a vast array of publicly
accessible internet resources, including blogs, tuning guides,
and LSM-KVS source code. Leveraging the knowledge of
even the source code of the system can provide a unique ad-
vantage. This allows the LLMs to understand the underlying
mechanisms and intricacies of the LSM-KVS. Consequently,
they can make more informed and precise suggestions for
parameter tuning.

Furthermore, LLMs’ capability to process and learn from
various data sources enables them to configure systems be-
yond just a subset of parameters. They can analyze the entire
configuration space, leading to performance tuning that con-
siders all possible parameter combinations.

4.2 LLM-based Auto-Tuning Framework
In addition to the LLM and LSM-KVS, there are four major
modules, 1) Pompt Generator, 2) Option Evaluator, 3) Active
Flagger, and 4) Safeguard Enforcer. The orchestration of these
components is performed in a feedback loop as shown in
Figure 2.
The framework is responsible to orchestrate all modules

and ensure they work in unison. The user is responsible
for starting the system with an expected system workload
(e.g., read intensive, write intensive). ELMo then takes over,
implementing the continuous feedback loop between the
Benchmarking System and LLM. When a pre-defined stop-
ping criterion is met (e.g., based on minimal performance
improvement or a maximum number of iterations), ELMO-
Tune outputs the final optimized configuration file.

Prompt Generation ELMo utilizes multiple factors when
creating the prompt, combining system information (e.g., via
psutil [40] and fio [13]), workload statistics, and current
configuration information. The collected information is in-
terlaced together to formulate a prompt.
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Figure 2. Tuning framework

Option Evaluator The LLM response might take vari-
ous formats depending on the chosen model and input in-
formation. The framework needs to be robust in parsing
these responses and extracting the proposed configuration
changes.
Active Flagger ELMO-Tune processes the benchmark-

ing results (e.g., extracts the throughput, latency, and tail
latency data from the report), compares it with the previ-
ous iteration’s performance values and determines if the
changes enhance performance. If there’s an improvement,
the new configuration is kept. Otherwise, ELMO-Tune re-
verts to the previous option file, and makes an intermediate
prompt with the information about deterioration, then re-
runs the benchmark with a new output. This ensures only
beneficial changes are recorded, progressively refining the
LSM-KVS configuration towards improvement.

Safeguard Enforcer LLMs are susceptible to generating
inaccurate or irrelevant outputs, known as hallucinations
[32]. ELMo implements two simple and effective solutions
that avoid possible mistakes/misconfigurations from LLMs, a
configurable blacklist that ensures no necessary options are
modified, and a format checker that ensures only specifically
formatted LLM output is accepted.

5 Implementation and Evaluation
5.1 Implementation and Experimental Setup
We utilize RocksDB version 8.8.1 [9] and the GPT-4 API [4]
for ELMo-Tune prototype development. The codebase of the
ELMo-Tune framework is written in Python and publicly
available on GitHub [3].
To ensure tests in diverse scenarios, we evaluate ELMo-

Tune with the following hardware configurations: CPU (2
CPU Cores, 4 CPU Cores), Memory (4GiB RAM, 8GiB RAM),

and Storage Devices (NVMe SSD, and SATA HDD). These
different hardware configurations were implemented using
different hardware setups in Docker containers. All evalua-
tions were run on the following workloads: 1) Write 50M KV-
pairs in random key order (fillrandom (FR) as write-intensive
workload); 2) Read 10M KV-pairs in random key order (read-
random (RR) as read intensive workloads) - Database pre-
loadedwith 25MKV-pairs; 3) 25M ops total of 2 threads doing
random-read and random-write (readrandomwriterandom
(RRWR) as mix workloads), and 4) 25M ops in Mixgraph, a
production workload configured with 50% Writes and 50%
Reads [17].
We utilize RocksDB version 8.8.1 in our evaluation and

utilize the default configuration provided by db bench, a
widely used Rocksdb benchmarking tool, as a baseline for
all the tests performed.

5.2 Evaluation Results
We run our evaluation on a variety of configurations, the
below subsections go through the results that demonstrate
the effectiveness of ELMo.

Hardware Configuration. We test ELMo on a total of 4
hardware configurations that vary in CPU (2, 4 cores) and
Memory (4, 8 GiB). The results for the Fillrandom test on
an NVMe SSD with varying hardware are shown in Table 1
for Throughput and Table 2 for p99 Latency. ELMo works
with varied hardware and achieves improvements of 15.5%
in throughput with a decrease in p99 latency by 13.5%.

Workloads. When testing ELMo on different workloads,
we find it outperforming the default files by as much as 2X
in terms of throughput and reducing p99 latency by as much
as 9X. The Results for the same have been displayed in Table
3 for Throughput and Table 4 for p99 Latency.
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(a) Throughput (b) P99 Latency (Write) (c) P99 Latency (Read)

Figure 3. Varying workloads on SATA HDD

(a) Throughput (b) P99 Latency (Write) (c) P99 Latency (Read)

Figure 4. Varying Workloads on NVMe SSD

Table 1. Varying Hardware Configurations for Fillrandom
on NVMe SSD - Throughput (ops/sec)

CPU + Memory (GiB) Config
2 + 4 2 + 8 4 + 4 4 + 8

Default 320377 301677 313992 310574
Tuned 362460 348237 362796 329252

Table 2. Varying Hardware Configurations for Fillrandom
on NVMe SSD - p99 Latency (us)

CPU + Memory (GiB) Config
2 + 4 2 + 8 4 + 4 4 + 8

Default 5.73 5.92 5.82 5.88
Tuned 5.01 5.42 5.03 5.62

Table 3. Varying Workloads with 4CPUS & 4GiB RAM on
NVMe SSD - Throughput (ops/sec)

Workloads
FR RR RRWR Mixgraph

Default 313992 1928 13217 17928
Tuned 362796 5178 43598 23488

Storage Devices. A more comprehensive evaluation is
provided for varying storage devices where we show differ-
ent workloads being tested on two storage devices. This can

Table 4. Varying Workloads with 4CPUS & 4GiB RAM on
NVMe SSD - p99 Latency (us)

Workloads
FR RR RRWR Mixgraph

Default 5.82 2697.55 (Write) 57.32
(Read) 1463.61

(Write) 14.87
(Read) 325.65

Tuned 5.03 1550.2 (Write) 28.21
(Read) 169.10

(Write) 14.59
(Read) 245.56

be seen in Figure 3 for HDDs and Figure 4 for SSDs. Results
for Readrandom were discarded as set system limitations
have throughputs of <10 ops/sec with tests timing out.

With Iteration 0 being the default db_bench configuration,
we see significant performance improvements over multiple
iterations of the test case. This trend is visible both for the
SSD and HDD devices. We observe throughput increases of
up to 3X and drops in p99 latency of up to 9X.
Changes over Iterations. ELMo posesses the ability to

tune and configure all options. Our fillrandom test on SATA
HDD for the 2CPUs + 4GiB RAM configuration finds that a
total of 23 configuration parameters in RocksDB were tuned
by the 7th Iteration. Table 5 shows 15 of these configurations
along with how they were changed across iterations.
The results demonstrate how the GPT-4 API iterates

and experiments with different configuration parameters to
achieve better performance. Furthermore, these parametrs
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Table 5. Changes in options over iterations by LLM

Parameter Default Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7
max_background_flushes -1 2 1 2 1 2
wal_bytes_per_sync 0 1048576 524288 1048576
bytes_per_sync 0 1048576 524288 1048576
strict_bytes_per_sync false true
max_background_compactions -1 2 3 2 4 3
dump_malloc_stats true false
enable_pipelined_write true false
max_bytes_for_level_multiplier 10 8
max_write_buffer_number 2 3 4 3 6
compaction_readahead_size 2097152 4194304 2097152 4194304
max_background_jobs 2 4 3 5 4
target_file_size_base 67108864 33554432 67108864 33554432
write_buffer_size 67108864 33554432 67108864
level0_file_num_compaction_trigger 4 6 4
min_write_buffer_number_to_merge 1 2 1 2 3

are modified with consideration of system resources, taking
memory and CPU budgets into account. This can be seen in
Table 5 when max_background_flushes are set to 2 and also
how the total memory budget is maintained in Iteration 1.

6 Conclusion & Discussion
Our present methodology establishes a feedback loop for
iterative enhancements and provides notable performance
uplifts. Moreover, the methodology can modify and tune a
multitude of options, not being limited to a smaller subset.
We observe 1) Adjusting more than 10 options in a sigle

iteration leads to marginal improvements, 2) Performing it-
erations allows the LLM to experiment and learn from past
results, 3) Such an approach allows for a flexible tuning ap-
proach that can work with a variety of system configurations,
workloads, and storage devices, 4) The model responds in
patterns similar to online blogs, preferring the same config-
uration options.
These observations show the potential of such an ap-

proach. However, notable limitations are still present - par-
ticularly with limited ability to achieve fine-tuning. The LLM
model is particularly good at providing a jumpstart to config-
uration. A solution that leverages this property, in cohesion
with fine-tuning mechanisms would enable faster and poten-
tially better tuning. Furthermore, the LLM has limitations
in terms of recognizing newer and depracated options, this
needs special attention as modern options (e.g. Dynamic
level sizing in Rocksdb) that are more useful can often be
overlooked, and older options (e.g Flush Job Count) can be
unncessarily focused upon.

A methodology like ELMo promises configurational flexi-
bility and unbounded tuning capability, and while the limi-
tations exist, we believe that they can be overcome and the
approach shows promise for further research.
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