
Can Modern LLMs Tune and Configure LSM-based
Key-Value Stores?

Viraj Thakkar, Madhumitha Sukumar, Jiaxin Dai, Kaushiki Singh, and Zhichao Cao
School of Computing and Augmented Intelligence, Arizona State University

{viraj.dt,msukuma2,jdai33,ksingh54,zhichao.cao}@asu.edu

Abstract
Log-Structured-Merge tree-based Key-Value Stores (LSM-
KVSs) are important data storage building blocks in mod-
ern IT infrastructure. However, tuning their performance
involves configuring over 100 parameters, a task typically
done manually or with limited parameters in auto-tuning
mechanisms. This paper explores and answers the following
question: canwe leverage LLM’s understanding of the system
and LSM-KVS components for unrestricted parameter-pool
tuning of LSM-KVS?
LLMs are trained on readily available LSM-KVS source

code, research papers, and open materials enabling the ma-
chines to have human-like understanding. We investigate in-
tegrating Large-Language Models (LLMs) into an automated
tuning framework for LSM-KVS to enhance the tuning ca-
pability and interactivity. Our framework utilizes LLMs to
recommend tailored configurations with calibrated prompts
based on hardware, system, andworkload information. Initial
results demonstrate upto 3X throughput improvements and
an upto 9X reduction in p99 latency across various hardware
and workloads compared to the out-of-box configuration for
the LSM-KVS.

CCSConcepts: • Information systems→Key-value stores;
Database utilities and tools.

Keywords: LSM-KVS, Automatic Tuning and Configuration,
Large Language Models

ACM Reference Format:
Viraj Thakkar, Madhumitha Sukumar, Jiaxin Dai, Kaushiki Singh,
and Zhichao Cao. 2024. Can Modern LLMs Tune and Configure
LSM-based Key-Value Stores?. In 16th ACM Workshop on Hot Topics
in Storage and File Systems (HOTSTORAGE ’24), July 8–9, 2024, Santa

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0630-1/24/07. . . $15.00
https://doi.org/10.1145/3655038.3665954

Clara, CA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3655038.3665954

1 Introduction
Log-Structured-Merge tree-based Key-Value Stores (LSM-
KVS) have emerged as a fundamental data storage solution
in the fast-moving digital world. To serve different use cases,
LSM-KVS have been adopted in forms such as RocksDB [9],
Big Table [20], LevelDB [10], HBase [2, 16], and Cassandra
[1]. An LSM-KVS is engineered with multiple critical com-
ponents to deliver high performance, including append-only
log files, in-memory tables, compaction, flush mechanisms,
and Bloom filters. Each component is crucial to improve
throughput, storage efficiency, and speed of data retrieval.
The diverse applications of LSM-KVS [8, 11, 18, 33, 39]

have been adapted to various setups [15, 24, 31]. To adapt
LSM-KVS to diverse applications, popular implementations
offer a wide array of configuration parameters, often exceed-
ing 100 as in RocksDB [9] and HBase [2], to manage LSM-
KVS’ different components. Companies often hire domain
experts who understand and interact with the workloads and
system configurations that set up the performant LSM-KVS
to manage this trade-off for specific workloads [17], storage
devices [19, 41, 42, 44], memory devices [27, 28, 45], and de-
ployments [16, 23, 47]. However, with the increasing number
of parameters, it is challenging for even the code developers
to adequately understand the effect of every option [5, 6, 14].
The growing complexity of LSM-KVS deployments has

spurred the development of automated methods for improv-
ing performance. These approaches fall into two major cate-
gories, Tuning - where exposed configuration parameters
are tuned to improve performance (e.g. RTune [26], Endure
[25], Dremel [48]), and Optimization - where the underly-
ing codebase and configuration parameters are bothmodified
to improve performance (e.g. ADOC [46], AC-Key [43]).
In this paper, we focus on Tuning mechanisms. Recent

studies like RTune [26], K2VTune [30] and Endure [25] lever-
age machine learning and optimization to forecast optimal
configurations for diverse workloads. Similarly, Dremel [48]
and Sami and Eiko [12] propose techniques for online con-
figuration selection and Bayesian optimization, respectively.

However, these approaches only focus on a subset of con-
figuration options (Bloom filters, cache size, etc.) and lack
leveraging knowledge of system resources, and workloads.
The shortcomings of these approaches highlight the need for

https://doi.org/10.1145/3655038.3665954
https://doi.org/10.1145/3655038.3665954
https://doi.org/10.1145/3655038.3665954

HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Viraj Thakkar, Madhumitha Sukumar, Jiaxin Dai, Kaushiki Singh, and Zhichao Cao

a system-aware auto-tuning methodology that demonstrates
an understanding of the functionality and correlations in
LSM-KVS components. Such a system should be able to tune
parameters as needed - not as provided, hence removing the
current limitations to auto-tuning only subsets of options.
This research explores Modern Large Language Mod-

els (LLMs) for automatic tuning and configuration of LSM-
KVS. LLMs have been trained on large datasets comprising
websites, blogs, articles, and open-source LSM-KVS code
[34, 37, 38]. Given knowledge consumed by modern LLMs,
such a tuning approach possesses the necessary components
for an un-restricted parameter-pool tuning of LSM-KVS.

LSM-KVS and LLMs have different interfaces, the former
based on rigid languages (C++, Java, Python, etc) and the
latter utilizing Natural Language. Exploring Such a system
presents several challenges: 1) A framework that constructs
prompts and facilitates the conversion between code and
natural language, and vice versa. 2) Construct parsers to
handle output from LLM responses that can be in the form of
text, a singular code block, and an interleaving combination
of both. 3) Safeguards for unexpected scenarios (e.g.disallow
of journaling or logging), and detection of unanticipated
responses (e.g. missing options, hallucinated responses).
To explore the LSM-KVS tuning possibilities of using

LLM and address the aforementioned challenges, we present
Elastic Large Language Model-based Tuning (called ELMo-
Tune), a novel LLM-based auto-tuning framework for LSM-
KVS. ELMo-Tune employs a feedback loop comprising mod-
ules dedicated to prompt construction, system resource mon-
itoring, fail-safe management, and interpretation of LLM
output for LSM-KVS tuning. The user is only responsible
for starting it with an expected system workload (e.g., read
intensive, write intensive, and ratios of the same).

We implement a prototype of ELMo-Tune with RocksDB
[9] and the GPT-4 API [4], and the framework is open-
sourced at Github 1 for further investigations and research.
Our prototype can achieve up to 3X improvement in through-
put and 9X improvement in p99 latency within 7 iterations
of tuning compared with the default configurations. We run
ELMo-Tune on a large variety of configurations discussed in
the evaluation section.

2 Background and Motivation
2.1 LSM-KVS and Its Options
Typical LSM-KVS design involves foreground (Get, Put,
Delete, and Scan) and background (flush, Bloom filters, and
compaction) components that share system resources. All
these components introduce numerous (over 100 sometimes
[2, 9]) configuration options to allow adapting an LSM-KVS
in different system/workload scenarios. Each configuration
option affects system behavior in unique ways, often with
dependencies and interactions between different parameters.
1https://github.com/asu-idi/ELMo-Tune

Figure 1. LSM-KVS Stages with Configuration Option

For example, configuring parameters related to compaction,
such as compaction_style and max_background_compactions,
counter-intuitively impacts both - compaction and flush, be-
cause of how configurations affect resource usage.

Adjusting configuration parameters to suit particular hard-
ware, software, and workload scenarios is complex. Not ev-
ery parameter equally influences system performance and
resource consumption; certain ones, especially those associ-
ated with memory management (like write buffer size and
active memory usage), data eviction strategies (such as flush
triggers), and different compaction approaches (for instance,
sub-compaction), may have a more pronounced impact. Fig-
ure 1 depicts the vast array of configuration possibilities in
LSM-KVS systems.

2.2 Tuning and Configuring LSM-KVS
Manual Tuning Traditionally, LSM-KVS have been tuned
manually, relying on the expertise of database administra-
tors. Human experts consider various characteristics of the
system (workloads, hardware, and storage devices) to pro-
vide tuning configurations [5–7]. However, this approach
involves trial-and-error adjustments, consuming valuable
time and resources. This approach, while widely used, in-
curs a high cost every time the system changes and needs
meticulous work in cases of fluctuating read-write patterns.

Auto-Tuning Advances
The drawbacks of manual tuning are well known and

while no methods replace curated manual tuning, recent
advancements in machine learning and optimization algo-
rithms have introduced various auto-tuning techniques for
LSM-KVS.
RTune [26] integrates deep learning and genetic algo-

rithms to forecast optimal configurations by analyzing work-
load patterns. Endure [25] focuses on robust tuning to max-
imize throughput across diverse scenarios. Dremel [48]
adopts a Multi-Armed Bandit model for online configuration
selection, while Sami and Eiko [12] incorporate multi-task
modeling into a Bayesian optimization framework.
Existing studies have limitations: they often cater to a

small subset of options (Bloom filters and Memory buffers

https://github.com/asu-idi/ELMo-Tune

Can Modern LLMs Tune and Configure LSM-based Key-Value Stores? HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

[29, 35], Merging strategies [21, 22, 36]), and lack of under-
standing of both - system resources and workloads, opting
for a trial-and-error approach [25, 26, 48].

2.3 Motivation - LLMs as ’Experts’
Current automated tools focus on a small subset of options,
lacking flexibility and intractability with the system and
workload. These drawbacks and the lack of transparency
often lead to manual tuning approaches which require sig-
nificant time and resource investments from experts.

To bridge this gap, we explore leveraging Large Language
Models (LLMs) in LSM-KVS tuning. LLMs exhibit a combina-
tion of human-like and machine-like behaviors, exhibiting
a human-like generalized knowledge base and a machine-
like lack of downtime. Modern LLMs are trained on exten-
sive datasets that include sources such as websites, tuning
guides, research papers, and open-source code repositories
like RocksDB, LevelDB, and Cassandra [34, 37, 38]. This train-
ing provides LLMs with a comprehensive understanding of
LSM-KVS systems and their optimization principles.
The objective of this research is to: 1) explore the depth

of understanding that LLMs have of LSM-KVS options; 2)
leverage LLM’s understanding of system and LSM-KVS com-
ponents for an un-restricted parameter-pool tuning system
for LSM-KVS; 3) evaluate the advantages and limitations of
LLM-based tuning framework.

3 Challenges
A Comprehensive Tuning Framework. Designing a sys-
tem that enables tuning beyond a small subset of options is
non-trivial. It necessitates consideration of factors such as
software versioning, hardware specifications, and runtime
usage. These variables must be effectively integrated and
processed by the framework before being relayed to the LLM.
Furthermore, the framework should be able to recognize and
implement changes suggested by the LLM to the LSM-KVS.

Crafting Effective Tuning Prompts.Given the nuanced
nature of language models like ChatGPT, where variations
in phrasing can yield very different outputs, formulating a
performant and effective prompt is one of the major hurdles.
With the abundance of information outputted by LSM-KVS
and input limitations of LLMs, questions like, 1) how much
information is enough? 2) what information first? and 3) how
to formulate the prompt. become increasingly important to
answer.
Handling Natural Language Responses. LLMs com-

municate via Natural Language, while the configuration of
LSM-KVS is through much stricter means - often ‘ini‘ files
or C++ code. This lack of common language needs special
translation and checks that allow the systems to work in the
same framework.
Mitigating LLM Hallucinations and Establishing

Safeguards. LLMs can occasionally produce confident yet

incorrect responses. Therefore, any framework leveraging
an LLM must balance trust in its outputs with a healthy de-
gree of skepticism. Robust safeguards are essential to vet
LLM-generated suggestions before implementation. Further-
more, certain critical options, such as disabling journaling or
I/O flush, should be restricted from modification to prevent
performance degradation.

4 ELMo-Tune
In this section, we present Elastic Large Language Model-
based Tuning (ELMo-Tune). We design ELMo-Tune to over-
come the above challenges and with two major design goals,
1) Allow tuning of all options available for the LSM-KVS, 2)
A framework that is flexible to combinations of workloads,
hardware, LSM-KVS versions, and storage devices.

4.1 LLMs: Beyond the Subset Paradigm
Large Language Models can be viewed as advanced predic-
tion systems that have been trained on a vast array of publicly
accessible internet resources, including blogs, tuning guides,
and LSM-KVS source code. Leveraging the knowledge of
even the source code of the system can provide a unique ad-
vantage. This allows the LLMs to understand the underlying
mechanisms and intricacies of the LSM-KVS. Consequently,
they can make more informed and precise suggestions for
parameter tuning.

Furthermore, LLMs’ capability to process and learn from
various data sources enables them to configure systems be-
yond just a subset of parameters. They can analyze the entire
configuration space, leading to performance tuning that con-
siders all possible parameter combinations.

4.2 LLM-based Auto-Tuning Framework
In addition to the LLM and LSM-KVS, there are four major
modules, 1) Pompt Generator, 2) Option Evaluator, 3) Active
Flagger, and 4) Safeguard Enforcer. The orchestration of these
components is performed in a feedback loop as shown in
Figure 2.
The framework is responsible to orchestrate all modules

and ensure they work in unison. The user is responsible
for starting the system with an expected system workload
(e.g., read intensive, write intensive). ELMo then takes over,
implementing the continuous feedback loop between the
Benchmarking System and LLM. When a pre-defined stop-
ping criterion is met (e.g., based on minimal performance
improvement or a maximum number of iterations), ELMO-
Tune outputs the final optimized configuration file.

Prompt Generation ELMo utilizes multiple factors when
creating the prompt, combining system information (e.g., via
psutil [40] and fio [13]), workload statistics, and current
configuration information. The collected information is in-
terlaced together to formulate a prompt.

HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Viraj Thakkar, Madhumitha Sukumar, Jiaxin Dai, Kaushiki Singh, and Zhichao Cao

Figure 2. Tuning framework

Option Evaluator The LLM response might take vari-
ous formats depending on the chosen model and input in-
formation. The framework needs to be robust in parsing
these responses and extracting the proposed configuration
changes.
Active Flagger ELMO-Tune processes the benchmark-

ing results (e.g., extracts the throughput, latency, and tail
latency data from the report), compares it with the previ-
ous iteration’s performance values and determines if the
changes enhance performance. If there’s an improvement,
the new configuration is kept. Otherwise, ELMO-Tune re-
verts to the previous option file, and makes an intermediate
prompt with the information about deterioration, then re-
runs the benchmark with a new output. This ensures only
beneficial changes are recorded, progressively refining the
LSM-KVS configuration towards improvement.

Safeguard Enforcer LLMs are susceptible to generating
inaccurate or irrelevant outputs, known as hallucinations
[32]. ELMo implements two simple and effective solutions
that avoid possible mistakes/misconfigurations from LLMs, a
configurable blacklist that ensures no necessary options are
modified, and a format checker that ensures only specifically
formatted LLM output is accepted.

5 Implementation and Evaluation
5.1 Implementation and Experimental Setup
We utilize RocksDB version 8.8.1 [9] and the GPT-4 API [4]
for ELMo-Tune prototype development. The codebase of the
ELMo-Tune framework is written in Python and publicly
available on GitHub [3].
To ensure tests in diverse scenarios, we evaluate ELMo-

Tune with the following hardware configurations: CPU (2
CPU Cores, 4 CPU Cores), Memory (4GiB RAM, 8GiB RAM),

and Storage Devices (NVMe SSD, and SATA HDD). These
different hardware configurations were implemented using
different hardware setups in Docker containers. All evalua-
tions were run on the following workloads: 1) Write 50M KV-
pairs in random key order (fillrandom (FR) as write-intensive
workload); 2) Read 10M KV-pairs in random key order (read-
random (RR) as read intensive workloads) - Database pre-
loadedwith 25MKV-pairs; 3) 25M ops total of 2 threads doing
random-read and random-write (readrandomwriterandom
(RRWR) as mix workloads), and 4) 25M ops in Mixgraph, a
production workload configured with 50% Writes and 50%
Reads [17].
We utilize RocksDB version 8.8.1 in our evaluation and

utilize the default configuration provided by db bench, a
widely used Rocksdb benchmarking tool, as a baseline for
all the tests performed.

5.2 Evaluation Results
We run our evaluation on a variety of configurations, the
below subsections go through the results that demonstrate
the effectiveness of ELMo.

Hardware Configuration. We test ELMo on a total of 4
hardware configurations that vary in CPU (2, 4 cores) and
Memory (4, 8 GiB). The results for the Fillrandom test on
an NVMe SSD with varying hardware are shown in Table 1
for Throughput and Table 2 for p99 Latency. ELMo works
with varied hardware and achieves improvements of 15.5%
in throughput with a decrease in p99 latency by 13.5%.

Workloads. When testing ELMo on different workloads,
we find it outperforming the default files by as much as 2X
in terms of throughput and reducing p99 latency by as much
as 9X. The Results for the same have been displayed in Table
3 for Throughput and Table 4 for p99 Latency.

Can Modern LLMs Tune and Configure LSM-based Key-Value Stores? HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

(a) Throughput (b) P99 Latency (Write) (c) P99 Latency (Read)

Figure 3. Varying workloads on SATA HDD

(a) Throughput (b) P99 Latency (Write) (c) P99 Latency (Read)

Figure 4. Varying Workloads on NVMe SSD

Table 1. Varying Hardware Configurations for Fillrandom
on NVMe SSD - Throughput (ops/sec)

CPU + Memory (GiB) Config
2 + 4 2 + 8 4 + 4 4 + 8

Default 320377 301677 313992 310574
Tuned 362460 348237 362796 329252

Table 2. Varying Hardware Configurations for Fillrandom
on NVMe SSD - p99 Latency (us)

CPU + Memory (GiB) Config
2 + 4 2 + 8 4 + 4 4 + 8

Default 5.73 5.92 5.82 5.88
Tuned 5.01 5.42 5.03 5.62

Table 3. Varying Workloads with 4CPUS & 4GiB RAM on
NVMe SSD - Throughput (ops/sec)

Workloads
FR RR RRWR Mixgraph

Default 313992 1928 13217 17928
Tuned 362796 5178 43598 23488

Storage Devices. A more comprehensive evaluation is
provided for varying storage devices where we show differ-
ent workloads being tested on two storage devices. This can

Table 4. Varying Workloads with 4CPUS & 4GiB RAM on
NVMe SSD - p99 Latency (us)

Workloads
FR RR RRWR Mixgraph

Default 5.82 2697.55 (Write) 57.32
(Read) 1463.61

(Write) 14.87
(Read) 325.65

Tuned 5.03 1550.2 (Write) 28.21
(Read) 169.10

(Write) 14.59
(Read) 245.56

be seen in Figure 3 for HDDs and Figure 4 for SSDs. Results
for Readrandom were discarded as set system limitations
have throughputs of <10 ops/sec with tests timing out.

With Iteration 0 being the default db_bench configuration,
we see significant performance improvements over multiple
iterations of the test case. This trend is visible both for the
SSD and HDD devices. We observe throughput increases of
up to 3X and drops in p99 latency of up to 9X.
Changes over Iterations. ELMo posesses the ability to

tune and configure all options. Our fillrandom test on SATA
HDD for the 2CPUs + 4GiB RAM configuration finds that a
total of 23 configuration parameters in RocksDB were tuned
by the 7th Iteration. Table 5 shows 15 of these configurations
along with how they were changed across iterations.
The results demonstrate how the GPT-4 API iterates

and experiments with different configuration parameters to
achieve better performance. Furthermore, these parametrs

HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Viraj Thakkar, Madhumitha Sukumar, Jiaxin Dai, Kaushiki Singh, and Zhichao Cao

Table 5. Changes in options over iterations by LLM

Parameter Default Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Iteration 7
max_background_flushes -1 2 1 2 1 2
wal_bytes_per_sync 0 1048576 524288 1048576
bytes_per_sync 0 1048576 524288 1048576
strict_bytes_per_sync false true
max_background_compactions -1 2 3 2 4 3
dump_malloc_stats true false
enable_pipelined_write true false
max_bytes_for_level_multiplier 10 8
max_write_buffer_number 2 3 4 3 6
compaction_readahead_size 2097152 4194304 2097152 4194304
max_background_jobs 2 4 3 5 4
target_file_size_base 67108864 33554432 67108864 33554432
write_buffer_size 67108864 33554432 67108864
level0_file_num_compaction_trigger 4 6 4
min_write_buffer_number_to_merge 1 2 1 2 3

are modified with consideration of system resources, taking
memory and CPU budgets into account. This can be seen in
Table 5 when max_background_flushes are set to 2 and also
how the total memory budget is maintained in Iteration 1.

6 Conclusion & Discussion
Our present methodology establishes a feedback loop for
iterative enhancements and provides notable performance
uplifts. Moreover, the methodology can modify and tune a
multitude of options, not being limited to a smaller subset.
We observe 1) Adjusting more than 10 options in a sigle

iteration leads to marginal improvements, 2) Performing it-
erations allows the LLM to experiment and learn from past
results, 3) Such an approach allows for a flexible tuning ap-
proach that can work with a variety of system configurations,
workloads, and storage devices, 4) The model responds in
patterns similar to online blogs, preferring the same config-
uration options.
These observations show the potential of such an ap-

proach. However, notable limitations are still present - par-
ticularly with limited ability to achieve fine-tuning. The LLM
model is particularly good at providing a jumpstart to config-
uration. A solution that leverages this property, in cohesion
with fine-tuning mechanisms would enable faster and poten-
tially better tuning. Furthermore, the LLM has limitations
in terms of recognizing newer and depracated options, this
needs special attention as modern options (e.g. Dynamic
level sizing in Rocksdb) that are more useful can often be
overlooked, and older options (e.g Flush Job Count) can be
unncessarily focused upon.

A methodology like ELMo promises configurational flexi-
bility and unbounded tuning capability, and while the limi-
tations exist, we believe that they can be overcome and the
approach shows promise for further research.

Acknowledgements
We would like to thank our anonymous reviewers for their
valuable feedback. We thank all the members of ASU-IDI
Lab for providing useful comments. This work was partially
funded by the Arizona State University startup fund.

References
[1] [n.d.]. Apache Cassandra | Apache Cassandra Documentation. https:

//cassandra.apache.org/_/index.html
[2] [n.d.]. Apache HBase – Apache HBase™ Home. https://hbase.apache.

org/
[3] [n.d.]. asu-idi/ELMo-Tune. https://github.com/asu-idi/ELMo-Tune
[4] [n.d.]. GPT-4 API general availability and deprecation of older models

in the Completions API. https://openai.com/blog/gpt-4-api-general-
availability

[5] [n.d.]. Navigating the Minefield of RocksDB Configu-
ration Options | by Kartik Khare | Better Programming.
https://betterprogramming.pub/navigating-the-minefield-of-
rocksdb-configuration-options-246af1e1d3f9

[6] [n.d.]. RocksDB Tuning Guide. https://github.com/facebook/rocksdb/
wiki/RocksDB-Tuning-Guide

[7] [n.d.]. RocksDB* Tuning Guide on Intel® Xeon® Processor Plat-
forms. https://www.intel.com/content/www/us/en/developer/articles/
guide/rocksdb-tuning-guide-on-xeon-based-system.html

[8] 2021. RocksDB inMicrosoft Bing. https://blogs.bing.com/Engineering-
Blog/october-2021/RocksDB-in-Microsoft-Bing

[9] 2024. facebook/rocksdb. Meta. https://github.com/facebook/rocksdb
original-date: 2012-11-30T06:16:18Z.

[10] 2024. google/leveldb. https://github.com/google/leveldb original-date:
2014-08-27T21:17:52Z.

[11] 2024. Tencent/paxosstore. https://github.com/Tencent/paxosstore
original-date: 2017-08-25T09:00:19Z.

[12] Sami Alabed and Eiko Yoneki. 2021. High-Dimensional Bayesian
Optimization with Multi-Task Learning for RocksDB. In Proceedings
of the 1st Workshop on Machine Learning and Systems (Online, United
Kingdom) (EuroMLSys ’21). Association for Computing Machinery,
New York, NY, USA, 111–119. https://doi.org/10.1145/3437984.3458841

[13] Jens Axboe. 2022. Flexible I/O Tester. https://github.com/axboe/fio
original-date: 2012-10-22T08:20:41Z.

[14] Mikhail Bautin, Kannan Muthukkaruppan, and Mikhail Bautin
and Kannan Muthukkaruppan. 2019. Enhancing RocksDB for Speed
and Scale | YugabyteDB. https://www.yugabyte.com/blog/enhancing-

https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://hbase.apache.org/
https://hbase.apache.org/
https://github.com/asu-idi/ELMo-Tune
https://openai.com/blog/gpt-4-api-general-availability
https://openai.com/blog/gpt-4-api-general-availability
https://betterprogramming.pub/navigating-the-minefield-of-rocksdb-configuration-options-246af1e1d3f9
https://betterprogramming.pub/navigating-the-minefield-of-rocksdb-configuration-options-246af1e1d3f9
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://www.intel.com/content/www/us/en/developer/articles/guide/rocksdb-tuning-guide-on-xeon-based-system.html
https://www.intel.com/content/www/us/en/developer/articles/guide/rocksdb-tuning-guide-on-xeon-based-system.html
https://blogs.bing.com/Engineering-Blog/october-2021/RocksDB-in-Microsoft-Bing
https://blogs.bing.com/Engineering-Blog/october-2021/RocksDB-in-Microsoft-Bing
https://github.com/facebook/rocksdb
https://github.com/google/leveldb
https://github.com/Tencent/paxosstore
https://doi.org/10.1145/3437984.3458841
https://github.com/axboe/fio
https://www.yugabyte.com/blog/enhancing-rocksdb-for-speed-scale/
https://www.yugabyte.com/blog/enhancing-rocksdb-for-speed-scale/

Can Modern LLMs Tune and Configure LSM-based Key-Value Stores? HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

rocksdb-for-speed-scale/
[15] Laurent Bindschaedler, Ashvin Goel, andWilly Zwaenepoel. 2020. Hail-

storm: Disaggregated Compute and Storage for Distributed LSM-based
Databases. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’20). Association for Computing Machinery, New
York, NY, USA, 301–316. https://doi.org/10.1145/3373376.3378504

[16] Zhichao Cao, Huibing Dong, Yixun Wei, Shiyong Liu, and David HC
Du. 2022. IS-HBase: An In-Storage Computing Optimized HBase
with I/O Offloading and Self-Adaptive Caching in Compute-Storage
Disaggregated Infrastructure. ACM Transactions on Storage (TOS) 18,
2 (2022), 1–42.

[17] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. 2020.
Characterizing, Modeling, and Benchmarking {RocksDB} {Key-Value}
Workloads at Facebook. 209–223. https://www.usenix.org/conference/
fast20/presentation/cao-zhichao

[18] Zhang Cao, Chang Guo, Ziyuan Lv, Anand Ananthabhotla, and
Zhichao Cao. 2024. SAS-Cache: A Semantic-Aware Secondary Cache
for LSM-based Key-Value Stores. In 38th Intl. Conf. on Massive Storage
Systems and Technology.

[19] Zhichao Cao, HaoWen, FenggangWu, andDavid HCDu. 2023. SMRTS:
A Performance and Cost-Effectiveness Optimized SSD-SMR Tiered
File System with Data Deduplication. In 2023 IEEE 41st International
Conference on Computer Design (ICCD). IEEE, 275–282.

[20] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. 2008. Bigtable: A Distributed Storage System for
Structured Data. ACM Trans. Comput. Syst. 26, 2, Article 4 (jun 2008),
26 pages. https://doi.org/10.1145/1365815.1365816

[21] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Mon-
key: Optimal Navigable Key-Value Store. In Proceedings of the 2017
ACM International Conference on Management of Data (SIGMOD ’17).
Association for Computing Machinery, New York, NY, USA, 79–94.
https://doi.org/10.1145/3035918.3064054

[22] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time
Trade-Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal
of Superfluous Merging. In ACM SIGMOD International Conference on
Management of Data.

[23] Siying Dong, Shiva Shankar P, Satadru Pan, Anand Ananthab-
hotla, Dhanabal Ekambaram, Abhinav Sharma, Shobhit Dayal, Nis-
hant Vinaybhai Parikh, Yanqin Jin, Albert Kim, et al. 2023. Disaggre-
gating RocksDB: A Production Experience. Proceedings of the ACM on
Management of Data 1, 2 (2023), 1–24.

[24] Haoyu Huang and Shahram Ghandeharizadeh. 2021. Nova-LSM: A Dis-
tributed, Component-based LSM-tree Key-value Store. In Proceedings
of the 2021 International Conference on Management of Data (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 749–
763. https://doi.org/10.1145/3448016.3457297

[25] Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, and Manos
Athanassoulis. 2022. Endure: a robust tuning paradigm for LSM trees
under workload uncertainty. Proc. VLDB Endow. 15, 8 (apr 2022),
1605–1618. https://doi.org/10.14778/3529337.3529345

[26] Huijun Jin, Jieun Lee, and Sanghyun Park. 2022. RTune: a RocksDB tun-
ing system with deep genetic algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference (Boston, Massachusetts)
(GECCO ’22). Association for Computing Machinery, New York, NY,
USA, 1209–1217. https://doi.org/10.1145/3512290.3528726

[27] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaib-
hav Gogte, and Ronald Dreslinski. 2022. Power-optimized Deployment
of Key-value Stores Using Storage Class Memory. ACM Transactions
on Storage (TOS) 18, 2 (2022), 1–26.

[28] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao,
Vaibhav Gogte, and Ronald G Dreslinski. 2021. Improving Performance
of Flash Based Key-Value Stores Using Storage Class Memory as a

Volatile Memory Extension.. In USENIX Annual Technical Conference.
821–837.

[29] Taewoo Kim, Alexander Behm, Michael Blow, Vinayak Borkar,
Yingyi Bu, Michael J. Carey, Murtadha Hubail, Shiva Jahangiri,
Jianfeng Jia, Chen Li, Chen Luo, Ian Maxon, and Pouria
Pirzadeh. 2020. Robust and efficient memory management
in Apache AsterixDB. Software: Practice and Experience 50, 7
(2020), 1114–1151. https://doi.org/10.1002/spe.2799 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2799.

[30] Jieun Lee, Sangmin Seo, Jonghwan Choi, and Sanghyun Park. 2024.
K2vTune: A workload-aware configuration tuning for RocksDB. Infor-
mation Processing & Management 61, 1 (2024), 103567.

[31] Jianchuan Li, Peiquan Jin, Yuanjin Lin, Ming Zhao, Yi Wang, and
Kuankuan Guo. 2021. Elastic and Stable Compaction for LSM-tree: A
FaaS-Based Approach on TerarkDB. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management
(CIKM ’21). Association for Computing Machinery, New York, NY,
USA, 3906–3915. https://doi.org/10.1145/3459637.3481913

[32] Fang Liu, Yang Liu, Lin Shi, Houkun Huang, RuifengWang, Zhen Yang,
and Li Zhang. 2024. Exploring and Evaluating Hallucinations in LLM-
Powered Code Generation. https://doi.org/10.48550/arXiv.2404.00971
arXiv:2404.00971 [cs].

[33] Gaoji Liu, Chongzhuo Yang, Qiaolin Yu, Chang Guo, Wen Xia, and
Zhichao Cao. 2024. Prophet: Optimizing LSM-Based Key-Value Store
on ZNS SSDs with File Lifetime Prediction and Compaction Compen-
sation. In 38th Intl. Conf. on Massive Storage Systems and Technology.

[34] Yiheng Liu, Hao He, Tianle Han, Xu Zhang, Mengyuan Liu, Jiaming
Tian, Yutong Zhang, Jiaqi Wang, Xiaohui Gao, Tianyang Zhong, Yi
Pan, Shaochen Xu, Zihao Wu, Zhengliang Liu, Xin Zhang, Shu Zhang,
Xintao Hu, Tuo Zhang, Ning Qiang, Tianming Liu, and Bao Ge. 2024.
Understanding LLMs: A Comprehensive Overview from Training to
Inference. https://doi.org/10.48550/arXiv.2401.02038 arXiv:2401.02038
[cs].

[35] Chen Luo and Michael J. Carey. 2020. Breaking down memory walls:
adaptive memory management in LSM-based storage systems. Pro-
ceedings of the VLDB Endowment 14, 3 (Nov. 2020), 241–254. https:
//doi.org/10.14778/3430915.3430916

[36] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew
Pavlo, and Geoffrey J. Gordon. 2018. Query-based Workload Forecast-
ing for Self-Driving Database Management Systems. In Proceedings of
the 2018 International Conference on Management of Data (SIGMOD ’18).
Association for Computing Machinery, New York, NY, USA, 631–645.
https://doi.org/10.1145/3183713.3196908

[37] Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu,
Richard Socher, Xavier Amatriain, and Jianfeng Gao. 2024. Large
LanguageModels: A Survey. https://doi.org/10.48550/arXiv.2402.06196
arXiv:2402.06196 [cs].

[38] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-
mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko
Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming
Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine,
Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg
Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim
Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell,
Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael,
Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunx-
ing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning,
Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus,
Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford,
Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni,

https://www.yugabyte.com/blog/enhancing-rocksdb-for-speed-scale/
https://doi.org/10.1145/3373376.3378504
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1145/3448016.3457297
https://doi.org/10.14778/3529337.3529345
https://doi.org/10.1145/3512290.3528726
https://doi.org/10.1002/spe.2799
https://doi.org/10.1145/3459637.3481913
https://doi.org/10.48550/arXiv.2404.00971
https://doi.org/10.48550/arXiv.2401.02038
https://doi.org/10.14778/3430915.3430916
https://doi.org/10.14778/3430915.3430916
https://doi.org/10.1145/3183713.3196908
https://doi.org/10.48550/arXiv.2402.06196

HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Viraj Thakkar, Madhumitha Sukumar, Jiaxin Dai, Kaushiki Singh, and Zhichao Cao

Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Graf-
stein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei
Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton,
Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter
Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost
Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider,
Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros,
Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kon-
drich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo,
Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy,
Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin,
Theresa Lopez, Ryan Lowe, Patricia Lue, AnnaMakanju, KimMalfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, AndrewMayne, BobMcGrew, ScottMayerMcKinney, Christine
McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta,
Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vin-
nie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati,
Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang,
Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley
Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita,
Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira
Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly
Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec
Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real,
Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder,
Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather
Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard,
Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian
Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Pet-
roski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak,
Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth
Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón
Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wain-
wright, Justin JayWang, AlvinWang, BenWang, JonathanWard, Jason
Wei, C. J. Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lil-
ian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wol-
rich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech
Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao,
Tianhao Zheng, Juntang Zhuang,William Zhuk, and Barret Zoph. 2024.
GPT-4 Technical Report. https://doi.org/10.48550/arXiv.2303.08774
arXiv:2303.08774 [cs].

[39] Satadru Pan, Theano Stavrinos, Yunqiao Zhang, Atul Sikaria, Pavel Za-
kharov, Abhinav Sharma, Shiva Shankar P, Mike Shuey, Richard Ware-
ing, Monika Gangapuram, Guanglei Cao, Christian Preseau, Pratap
Singh, Kestutis Patiejunas, JR Tipton, Ethan Katz-Bassett, and Wyatt
Lloyd. 2021. Facebook’s Tectonic Filesystem: Efficiency from Exascale.
In 19th USENIX Conference on File and Storage Technologies (FAST 21).
USENIX Association, 217–231. https://www.usenix.org/conference/
fast21/presentation/pan

[40] Giampaolo Rodola. 2024. giampaolo/psutil. https://github.com/
giampaolo/psutil original-date: 2014-05-23T14:01:48Z.

[41] Fenggang Wu, Bingzhe Li, Zhichao Cao, Baoquan Zhang, Ming-Hong
Yang, Hao Wen, and David HC Du. 2019. ZoneAlloy: Elastic Data and
Space Management for Hybrid SMR Drives. In 11th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 19).

[42] Fenggang Wu, Bingzhe Li, Baoquan Zhang, Zhichao Cao, Jim Diehl,
Hao Wen, and David HC Du. 2020. Tracklace: Data management

for interlaced magnetic recording. IEEE Trans. Comput. 70, 3 (2020),
347–358.

[43] Fenggang Wu, Ming-Hong Yang, Baoquan Zhang, and David H. C. Du.
2020. {AC-Key}: Adaptive Caching for {LSM-based} {Key-Value} Stores.
603–615. https://www.usenix.org/conference/atc20/presentation/wu-
fenggang

[44] Fenggang Wu, Baoquan Zhang, Zhichao Cao, Hao Wen, Bingzhe Li,
Jim Diehl, Guohua Wang, and David HC Du. 2018. Data management
design for interlaced magnetic recording. In 10th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 18).

[45] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu Tang, Hong Jiang,
Changsheng Xie, and Xubin He. 2020. {MatrixKV}: Reducing Write
Stalls and Write Amplification in {LSM-tree} Based {KV} Stores
with Matrix Container in {NVM}. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 17–31.

[46] Jinghuan Yu, Sam H. Noh, Young-ri Choi, and Chun Jason Xue. 2023.
{ADOC}: Automatically Harmonizing Dataflow Between Components
in {Log-Structured} {Key-Value} Stores for Improved Performance. 65–
80. https://www.usenix.org/conference/fast23/presentation/yu

[47] Qiaolin Yu, Chang Guo, Jay Zhuang, Viraj Thakkar, Jianguo Wang,
and Zhichao Cao. 2024. CaaS-LSM: Compaction-as-a-Service for LSM-
based Key-Value Stores in Storage Disaggregated Infrastructure. Pro-
ceedings of the ACM on Management of Data 2, 3 (2024), 1–26.

[48] Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming Liu, and Arvind
Krishnamurthy. 2022. Dremel: Adaptive Configuration Tuning of
RocksDB KV-Store. In Abstract Proceedings of the 2022 ACM SIGMET-
RICS/IFIP PERFORMANCE Joint International Conference on Measure-
ment and Modeling of Computer Systems (Mumbai, India) (SIGMET-
RICS/PERFORMANCE ’22). Association for ComputingMachinery, New
York, NY, USA, 61–62. https://doi.org/10.1145/3489048.3530970

https://doi.org/10.48550/arXiv.2303.08774
https://www.usenix.org/conference/fast21/presentation/pan
https://www.usenix.org/conference/fast21/presentation/pan
https://github.com/giampaolo/psutil
https://github.com/giampaolo/psutil
https://www.usenix.org/conference/atc20/presentation/wu-fenggang
https://www.usenix.org/conference/atc20/presentation/wu-fenggang
https://www.usenix.org/conference/fast23/presentation/yu
https://doi.org/10.1145/3489048.3530970

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 LSM-KVS and Its Options
	2.2 Tuning and Configuring LSM-KVS
	2.3 Motivation - LLMs as 'Experts'

	3 Challenges
	4 ELMo-Tune
	4.1 LLMs: Beyond the Subset Paradigm
	4.2 LLM-based Auto-Tuning Framework

	5 Implementation and Evaluation
	5.1 Implementation and Experimental Setup
	5.2 Evaluation Results

	6 Conclusion & Discussion
	References

