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Abstract

Log-Structured Merge-tree-based Key-Value Stores (LSM-KVS) are
widely used to support modern, high-performance, data-intensive
applications. In recent years, with the trend of deploying and op-
timizing LSM-KVS from monolith to disaggregated storage (DS)
setups, the confidentiality of LSM-KVS persistent data (e.g., WAL
and SST files) is vulnerable to unauthorized access from insiders and
external attackers and must be protected using encryption. Existing
solutions lack a high-performance design for encryption in LSM-
KVS, often focusing on in-memory data protection with overheads
of 3.4-15× and lack the scalability and flexibility considerations
required in DS deployments.

This paper proposes two novel designs to address the challenges
of providing robust security for persistent components of LSM-KVS
while maintaining high performance in both monolith and DS de-
ployments - a simple and effective instance-level design suitable for
monolithic LSM-KVS deployments, and SHIELD, a design that em-
beds encryption into LSM-KVS components for minimal overhead
in both monolithic and DS deployment. We achieve our objective
through three contributions: (1) A fine-grained integration of en-
cryption into LSM-KVS write path to minimize performance over-
head from exposure-limiting practices like using unique encryption
keys per file and regularly re-encrypting using new encryption keys
during compaction, (2) Mitigating performance degradation caused
by recurring encryption of Write-Ahead Log (WAL) writes by using
a buffering solution and (3) Extending confidentiality guarantees
to DS by designing a metadata-enabled encryption-key-sharing
mechanism and a secure local cache for high scalability and flexi-
bility. We implement both designs on RocksDB, evaluating them in
monolithic and DS setups while showcasing an overhead of 0-32%
for the instance-level design and 0-36% for SHIELD.

1 Introduction

Log-StructuredMerge-tree-based Key-Value Stores (LSM-KVS) have
become a foundational component in modern applications, such
as machine learning, stream processing, and artificial intelligence
for supporting high-throughput workloads [26, 68]. LSM-KVS en-
hances write performance by appending new data to storage rather
than applying in-place updates to the on-storage files. Incoming
writes are logged sequentially in a Write-Ahead Log (WAL) to en-
sure crash consistency and subsequently buffered in an in-memory
self-sorting structure called memtable. When full, the memtable
is persisted into an immutable Sorted String Table (SST) file. This
out-of-place update model, combined with periodic background
compactions that merge and reorganize SST files, provides a high
write throughput and moderate read throughput [34].

Traditionally, LSM-KVS systems were designed for monolithic,
shared-nothing infrastructures [34, 35]. Scaling these systems in-
volved deploying multiple LSM-KVS instances across servers, with
sharding used to distribute data [26, 38]. Recently, disaggregated
data centers (DDCs), which decouple resources into compute, mem-
ory, and storage heavy servers [39, 92] have introduced new op-
portunities for LSM-KVS. Recent research including NovaLSM
[44], HailStorm [22], CaaS-LSM [93], Disaggregated RocksDB and
HBase [25, 36] has proposed optimizations such as offloading com-
paction tasks, leveraging tiered storage, and light-weight read-only
instance mechanisms for higher write and read performance to
leverage the decoupled LSM-KVS architecture in a disaggregated
storage (DS) deployment. Such work relies upon sharing client data
stored in the WAL and SST files at disaggregated storage across
multiple servers at different server clusters, which in DS may have
other users and applications.

The attack surface has expanded as deployments have moved
from monolith to disaggregated deployments. To safeguard client
data in these files from unauthorized access, data confidential-
ity must be ensured using strong encryption algorithms [65] like
AES [31] or ChaCha [21]. Specifically, this paper focuses on three
threats: (1) unauthorized users with legitimate access to the server,
(2) external attackers gaining filesystem access to disaggregated
storage cluster, and (3) untrusted storage providers who may have
physical or backdoor access to the storage media.

Encryption [31, 49] involves different transformative processes
of performing operations on data using a secret Data Encryption
Key (DEK) that transforms data to be written to file. Only holders
of this secret DEK can access this data, which is a robust method to
ensure protection from the aforementioned threats. However, the
process also introduces overhead in repetitive, expensive memory
allocation calls, secure DEK management, and optional integrity
checks. Additionally, to minimize data exposure risk in situations
of DEK leaks, it is recommended [65] to implement DEK-handling
practices such as the use of unique DEKs for every file and to
perform frequent re-encryption of data using DEK-rotation. All
these processes introduce additional overhead and latency, which
is highly undesirable in high-performance systems like LSM-KVS.

Existing LSM-KVS Encryption solutions, such as SPEICHER [16]
and PLDB [84], are designed primarily for providing strong data-
in-use protection in monolithic, shared-nothing infrastructures.
However, they fall short in addressing the specific needs of data-
at-rest protection, which requires mechanisms like DEK rotation
and unique DEKs per file to enhance security. Furthermore, these
solutions do not propose DEK-sharing methods to adapt to different
flexible deployments of disaggregated storage, as shown in Table 1.
To ensure data in use is protected, these systems perform encryp-
tion using high-overhead [10] hardware-based environments called
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Table 1: Comparison of Our Designs with Existing Work.
Support for

Disaggregated Storage
Focus On

Data-at-Rest Protection
Focus on

Data-in-Use Protection
DEK Handling

Practices
Throughput
Degradation

No-Encryption ✓ N/A N/A N/A N/A
Existing LSM-KVS
Encryption Soln. × × ✓ × 340–1,500%

Instance-level
Encryption × ✓ × × 0–32%

SHIELD ✓ ✓ × ✓ 0–36%

enclaves (like Intel SGX [29]), which gives them additional data con-
fidentiality guarantees. However, this approach incurs significant
performance overheads, 6.7-13× (SPEICHER) and 3.4-9.4× (PLDB) -
with the high-overhead enclaves as the primary bottleneck, limiting
existing research from finding other potential bottlenecks that may
arise from integrating encryption in LSM-KVS. Moreover, exist-
ing solutions use a single DEK without supporting DEK rotation,
increasing the risk associated with DEK compromise. Addressing
these gaps is critical for balancing the distinct requirements of data
at rest and data in use while ensuring robust performance and
adaptability across deployment architectures.

Our research focuses on providing data confidentiality for per-
sistent files of LSM-KVS while maintaining high performance for
flexible environments from monolith to DS. To achieve this, careful
design considerations are required. DEK-handling practices must
especially be implemented for DS deployments where other users
utilize the server, and taking it offline to protect compromised data
is not an option. Removing high-overhead in-memory protection
also exposes a significant overhead when performing atomic en-
cryption in the WAL, which must be managed. Further, a flexible
and highly available approach must be presented to support deploy-
ments and optimizations in DS, including offloaded compaction or
read-only instances.

To achieve our objective, three key issues must be resolved. First,
while simply encrypting data before persistence is possible, it does
not solve challenges with integrating DEK practices. How do we
utilize the LSM-KVS design and embed encryption while minimiz-
ing the overhead from unique DEKs per file and DEK rotation? The
solution must be hardware-independent and provide secure gen-
eration and distribution of DEKs in DS. Second, encrypting each
WAL-write (small writes) necessitates repetitive high-overhead
encryption initialization processes like memory allocation and in-
troduces considerable performance degradation. How to mitigate
this overhead to minimize the impact of performance from en-
crypting WAL-writes? Third, as DS grows in popularity, scalable
DEK distribution and management systems must be integrated
within LSM-KVS deployments. How to create a highly available
DEK-sharing design with minimal latency for DS deployments?

To overcome these challenges, we propose two novel LSM-KVS
designs. The first is a simpler instance-level design that is a non-
intrusive solution designed for monolithic and distributed environ-
ments where more control over the server is present. This design
(EncFS) is a unified I/O engine that overloads the I/O function of
LSM-KVS with encryption and decryption support. Based on EncFS,
we further propose a comprehensive solution SHIELD, SHield
Integrates Encryption to LSM-KVS for DDCs, that can be used for
both monolith and distributed deployments. However, it has been
specifically designed to tackle the challenges from DS deployments
of LSM-KVS using three main novel designs.
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Figure 1: Different Components involved in Writes for KV-
Pairs in LSM-KVS.

• Embedding encryption within the write path of LSM-KVS.
SHIELD uses a new DEK for every new file created. This inte-
gration with compaction allows it to simultaneously provide
periodic DEK rotation.

• WALperformance optimization uses an application-managed
buffer and proposes a data-persistency and performance trade-
off. This buffer defers encryption and amortizes the cost of en-
cryption over several writes.

• Flexibility for DS by designing our solution to be compatible
with certain pre-existing encryption key distribution services
(KDS) and integrating DEK management into the metadata of
LSM-KVS files. Other servers can use the embedded DEK iden-
tifier to retrieve DEK from the KDS, which is responsible for
authorization authentication.
We implement a prototype for EncFS and SHIELD using RocksDB

and open-source it onGitHub1.We evaluate both EncFS and SHIELD
in various micro and macro benchmarks to cover specific and real-
world workloads while also performing a sensitivity analysis of
different tunable parameters in LSM-KVS.We also evaluate SHIELD
in disaggregated storage and offloaded compaction deployments,
and present our results. We evaluate all major modules of SHIELD
using db_bench [37] and YCSB [27]. EncFS shows a performance re-
gression of 0-32% and SHIELD of 0-36% compared to an unencrypted
implementation of RocksDB. In the DS deployments, SHIELD has
15% throughput regression compared with RocksDB deployed in
the same environment.

2 Background

2.1 LSM-KVS
LSM-KVS is widely used in today’s infrastructure for storing un-
structured data and is optimized for write-heavy workloads [35].
To achieve a high write throughput, LSM-KVS leverages an out-of-
place update strategy and append-only data files [68]. The overall
architecture of LSM-KVS is shown in Figure 1. Key-Value Pairs
1https://github.com/asu-idi/SHIELD

2



Pr
e
Pr
in
t.
Ac

ce
pt
ed

at
SI
GM

O
D
20
25

SHIELD: Encrypting Persistent Data of LSM-KVS from Monolithic to Disaggregated Storage

(KV-pairs) are first written to an on-disk Write-Ahead Log (WAL)
to guarantee crash recovery and then buffered in a self-sorting
in-memory structure (e.g., a skiplist) called the memtable. Once the
memtable is full, flush operation persists the memtable to the stor-
age system as an immutable Sorted-String Table (SST) file. SST files
are maintained at multiple levels, and they do not have key-range
overlaps in the same level (excluding level-0). Once a level triggers a
pre-set compaction condition, one SST file at the level is selected to
be merged with SST files in the next level with key-range overlaps
to eliminate duplicate or obsolete KV-pairs for quicker read lookups
and reduced storage overhead [26, 34].

The data persistency of LSM-KVS relies on three types of on-
storage files: metadata files (e.g., Manifest file in RocksDB), WAL
files, and SST files. The WAL and SST files are the only files hold-
ing any user data.Write-Ahead Logs. In popular LSM-KVS like
RocksDB [80] and LevelDB [5], each KV-pair is appended to the
WAL via a buffered I/O interface. This interface leverages an OS-
managed in-memory buffer that aggregates multiple write opera-
tions before flushing them to disk. This reduces the frequency of
costly disk I/O operations, improving performance at the cost of
data persistence [28, 58, 71]. Buffered I/O ensures recovery from
process crashes; however, KV-pairs in the OS buffer (not yet flushed
to disk) are lost during a system crash. SST Files. KV-pairs are writ-
ten to SST files using either direct I/O or buffered I/O during flush
or compaction, depending on the implementation. These KV-pairs
are sorted and stored as size-capped blocks (e.g., 4KB in RocksDB),
enabling efficient lookups and range queries [79, 80]. When KV-
pairs are requested, the block is the basic I/O unit to be read from
the storage system to the LSM-KVS in-memory block cache for fur-
ther binary search. SST files are organized across levels, with each
successive level containing files sized capped by approximately 𝑁

times (e.g., configured to 10 in RocksDB and LevelDB) larger than
those in the previous level (called fanout).

Current LSM-KVS implementations often store unencrypted
(plaintext) data within WAL and SST files, exposing sensitive client
data to server compromises. Data confidentiality should be ensured
using encryption to ensure sensitive information remains protected
from unauthorized access. Encryption involves using a secret Data
Encryption Key (DEK) to transform plaintext into ciphertext, en-
suring that unauthorized users cannot access the data [31, 49]. This
process can be applied at various levels - the disk, filesystem, and
application - each with its own trade-offs [9, 67, 86] in terms of
access control and performance. Disk or filesystem-level encryption
generally provides broad access control, allowing all system users
to access data in plaintext. Meanwhile, application-level encryption
offers more granular control over who can access plaintext from spe-
cific data files, making them more appropriate solutions for multi-
user systems. However, while the granularity of application-level
encryption is desirable, it introduces additional overhead [13, 88]
for the management, generation, storage, retrieval, and the associ-
ated processing latency for DEKs. The encryption and decryption
processes also carry their own overheads, including memory al-
location, computational expenses, secure key management, and
optional integrity checks.

Compute Pool
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Server

LSM-KVS
Instance

Read only LSM-
KVS Instance

Server

Tiered
Storage
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Server Server
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Compaction

SST

WAL confconf

conf
Tiered Storage 

cpu diskmem

cpu diskmem

Figure 2: Different LSM-KVS Deployments in DS.

2.2 LSM-KVS in Disaggregated Storage

Disaggregated Data Centers (DDCs) enable flexible resource man-
agement and dynamic resource scaling by decoupling resources into
compute, memory, and storage heavy server pools. These servers
are interconnected through high-speed networks [39, 92], and re-
source provision can be independently scaled to application de-
mand [14, 57, 83, 96]. Recently, disaggregated setups have gained
prominence; in particular, Disaggregated Storage (DS) has been de-
ployed by companies in large-scale systems like Google’s GFS [40]
and Meta’s Tectonic [69].

The shift towards DDCs has changed the LSM-KVS initially de-
signed for monolithic and shared-nothing infrastructures [36]. In
the past, hundreds of LSM-KVS instances would be deployed on tens
of monolithic servers for distributed data management using data
sharding [35, 38, 81]. Each LSM-KVS instance uses the same com-
pute, memory, and storage resources and may encounter resource
contention with other instances in the same server. To address the
limitations of monolithic deployments and be adapted to DDCs,
LSM-KVS architecture has since evolved to leverage disaggregated
resources better. Different components such as persistent storage,
indexing, and compaction are decoupled and re-distributed to spe-
cialized resource pools [22, 44, 72, 91, 93] to improve the scalability,
resource utilization, and reduce resource wasting [25, 36].

Figure 2 shows various deployment strategies and optimizations
for LSM-KVS in a DS setup. SST files and I/O-heavy tasks like com-
paction are offloaded to the disaggregated storage cluster to reduce
I/O traffic [22, 36, 44, 93]. Tiered storage optimizes throughput
by initially storing WALs locally before moving them to disaggre-
gated storage for long-term data persistence [98]. The data-sharing
capabilities of disaggregated storage enable optimizations like com-
paction offloading and on-demand read-only instance launching
via WAL and SST sharing [93, 98]. During intensive read workloads,
multiple read-only instances can be launched in the compute pool
to serve queries, while offloaded compaction can run on any avail-
able node by accessing shared SST files and storing results back in
disaggregated storage [93].

In such setups, if WAL and SST files are not encrypted, the attack
surface expands tomultiple servers sincemultiple servers can access
data files belonging to a single LSM-KVS instance. This creates
vulnerabilities from unauthorized users and applications accessing
shared disaggregated storage, necessitating data confidentiality
throughout the data lifecycle—in transit, in memory, and at rest.
Solutions employing Transport Layer Security [78, 90] and Trusted
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Figure 3: Security Threats Considered in the Threat Model.

Execution Environments [29, 30, 56] provide data confidentiality
in transit and in memory respectively [63, 77]. For data at rest,
confidentiality is provided by encrypting data before persisting it.

For at-rest data (e.g., SST files and WAL), a DS setup presents a
larger attack surface with other potentially compromised users and
applications using the same physical resources of the server. In such
settings, DEK compromises aremore likely, and to limit andmitigate
such compromises, the re-encryption of data with a new DEK,
DEK-rotation, is required. Such action necessitates large I/Os for re-
encrypting all data and persisting it again, deleting older data, which
can reduce the performance and availability of LSM-KVS. While
this is acceptable in controlled environments, such an approach will
affect the availability of other applications in a disaggregated setup.
To avoid such situations, two DEK-handling practices [65] are used:
(1) unique DEK for every file to limit data exposure while having to
re-encrypt only a single file in DEK compromises and (2) periodic
DEK rotations to limit the time frame in which a compromised DEK
is effective. Further, these practices facilitate fine-grained access
control, allowing implementations where the compaction server is
only given access to specific files.

3 Motivation and Challenges

LSM-KVS often do not encrypt stored files holding client data
(WAL and SST), making them susceptible to compromise in DS.
On-disk confidentiality of these files is essential using encryption
with careful consideration of flexibility for different deployments
of LSM-KVS from monolith to disaggregated infrastructures and
effective methods to implement DEK-management practices to have
minimal impact on performance. This section covers the possible
threats of leaving data insecure, followed by our motivation and
challenges for this research.

3.1 Threat Model
We utilize threat models from prior research on LSM-KVS security
(e.g., PLDB [84], SPEICHER [16]) and adapt these models to account
for the demands of DS. Specifically, we consider the following
threats at different system components.
• Unauthorized access by the users with legitimate access to the

server but no read or write access to any LSM-KVS component.
• External attackers exploiting system vulnerabilities to gain

unauthorized access to the local file system or any DS system.

• Untrusted storage medium where any storage devices within
DS are untrusted, thus, may leak sensitive information and be
tampered with.

• Data Encryption Key (DEK) compromise where a strong ad-
versary gains access to the DEK and potential data exposure risk
must be minimized.

This paper focuses on confidentiality for the persistent data com-
ponents (i.e., SST files, WAL, and Manifest) of LSM-KVS, as shown
in Figure 3. Memory and network-based attacks, while critical,
introduce tangential challenges (e.g., buffer overflows and replay
attacks) [19, 97] and are left for future work. We assume that the
security primitives and the security infrastructure remain secure,
including the KDS [52, 66] which is the DEK [42, 43] issuing and
management service. Compromised security primitives could by-
pass authentication, which is beyond our model’s scope.

3.2 Motivation
A secure LSM-KVS must ensure the confidentiality of client data in
SST, WAL, and metadata (Manifest) files across both monolithic and
disaggregated storage (DS) deployments, protecting against threats
outlined in our model. This section highlights the limitations of
existing solutions and our motivation for this research.
Limitations of Current Solutions.Current encryption implemen-
tations for LSM-KVS, like SPEICHER [16] and PLDB [84], focus on
in-memory data protection using hardware-based trusted execution
environments called enclaves, which incur significant performance
degradation (6.7–13× for SPEICHER and 3.4–9.4× for PLDB). These
solutions extend encryption to data at rest but use a single DEK
for all files, centralizing cryptographic risk and increasing vul-
nerability to DEK compromise. Moreover, they do not implement
DEK-handling practices of having unique DEKs per file or regular
DEK-rotation that enhance security by limiting compromised keys’
scope and temporal exposure. The enclave-based approach also
shifts focus away from exploring performance bottlenecks intro-
duced by encryption. Neither solution supports DS deployments,
as they lack integration with KDS for securely distributing DEKs
across multiple servers in DS.
Benefits of Embedding Encryption in LSM-KVS. Focusing on
the persistent component of LSM-KVS, a layer of encryption im-
plemented between the file I/O engine and LSM-KVS can ensure
the confidentiality of files (i.e., SST, WAL, and Manifest files). Fur-
ther security enhancements can be achieved with additional DEK-
handling practices of unique DEKs per file, which isolate the impact
of a DEK compromise on individual files, and regular DEK rotation,
which minimizes the duration any single key is in use and reduces
long-term exposure risks as discussed in Section 2.2. Additionally,
integration with a KDS for secure DEK distribution across servers
enables a highly available and scalable deployment of LSM-KVS
in different environments. These practices must be integrated to
provide stronger data confidentiality while supporting more robust
response mechanisms to DEK compromises, making the system
more resilient and secure in monolithic and DS settings.
Minimizing Encryption Overhead for WAL-Writes. Data en-
cryption introduces additional overhead [46] from the setup of
2Averaged 100 iterations on Intel i9-13900 CPU, with an NVMe SSD, using OpenSSL
v3.0.2 (Encryption) and C++17 stdio (File I/O) libraries.
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Figure 4: Analysis of Encryption Costs and Writes.2

Table 2: Impact of Encryption for WAL-Writes.
Throughput Difference (%)

No Encryption 291966
Encrypted SST 280353 -3.9%
Encrypted All (SST & WAL) 196021 -32.8%

necessary components like memory allocation and initialization
vectors, the process of encrypting the data using algorithms such
as AES [31] or ChaCha [21], and the cleanup where resources like
memory are released. As shown in Figure 4a, the cost of encryption
is significantly lower (approx. 9×) than writing the same amount
of data to a file. However, unlike file initialization—where a pointer
can be held in memory and reused, encryption initialization must
be performed repeatedly for separate encryption. The encryption
overhead is amortized for large-sized write operations; however,
for smaller writes, the effect is more pronounced.

In LSM-KVS, SST files are created via background operations, and
Manifest is infrequently appended. Conversely, foreground WAL
writes are highly frequent and synchronous, and if KV-pairs are
smaller in size, the encryption overhead of a single KV-pair is very
significant compared to the duration of writes, as shown in Figure
4b. The same effect is much less significant for larger background
writes from flush and compactions, where data is asynchronously
persisted in large batches [32], allowing the encryption cost to be
amortized over the batch. We demonstrate the effect of encryption
using Table 2 where addingWAL encryption reveals an approx. 32%
performance degradation. However, leaving the WAL in plaintext
exposes data to potential compromise, and disabling the WAL will
sacrifice crash consistency, making neither approach viable.
Flexibility for Different Deployments. Section 2.2 discusses
different deployments for LSM-KVS. In a distributed system, shard-
ing is performed to coordinate hundreds of LSM-KVS instances;
and in DS, components of LSM-KVS (like offloaded compaction,
read-only instances) can be present on different servers. With the
implementation of security measures like unique DEKs per file and
regular DEK rotation, implementing a secure KDS is necessary for
all servers to request new and existing DEKs. However, if multiple
instances on the same server need access to the same DEK, it is
impractical to introduce network latency costs for repetitive DEKs
requests from the KDS that may be on a different server.

3.3 Research Objectives and Challenges
In this paper, we focus on encrypting the persistent component of
LSM-KVS to ensure data confidentiality. We explore the integration
of encryption and how DEK-handling practices become more im-
portant and suitable as we move from monolith to DS deployments
of LSM-KVS.
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Encrypted LSM-KVS Persistent files

compaction

write
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flushWAL-
writes

Transparent Encryption Module (TEM)

read
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SST confconf
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Other
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LSM-KVS
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IOE

IMC
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Manifest-
writes

LSM-KVS in-memory components (IMC)

Figure 5: Design Overview for Instance-level Encryption.

However, there are three main challenges to achieving the ob-
jectives. First, we need to integrate encryption into LSM-KVS
for both monolith and disaggregated storage (DS) deployments.
How should the ideal encryption integrations be chosen in both
monolith and DS systems as an additional layer or by embedding it
within the LSM-KVS for implementation with minimal overhead
while implementing DEK-handling practices? Second, implement-
ing DEK-handling practices requires additional processes, including
distributing new DEKs per file, re-encrypting data when DEKs are
rotated periodically, communicating with a KDS, and providing a
granular access control mechanism. Each process introduces ad-
ditional latency, undesirable for high-performance systems like
LSM-KVS. Careful considerations must be made while performing
this integration. Third, encryption initialization is an expensive pro-
cess that needs to be done over and over for every write operation
- doing it for every WAL-Write is an expensive process that needs
to be managed carefully. How do we design a solution thatman-
ages the WAL encryption bottleneck to minimize performance
impact while still maintaining strong encryption guarantees and
addressing the outlined threat model? Finally, with flexible de-
ployments for LSM-KVS in distributed systems with sharding or
DS with offloaded compaction and read-only instances, client data
holding files (SST and WAL) are required on multiple instances and
servers. How to effectively coordinate DEKs that are used to encrypt
these files while avoiding repetitive DEK requests for LSM-KVS
instances on the same server?

We note the distinct differences in server control for monolith
designs with complete control, and how it has evolved to having
lesser control over server access control in DS. To address the above
challenges, we propose two designs. Our designs propose solutions
apt for each setting. Section 4 proposes a design for Monolith de-
ployments of LSM-KVS, and Section 5 proposes SHIELD, a solution
designed for DS deployments of LSM-KVS with backward compati-
bility to support monolith.

4 Instance-level Encryption for Monolithic
LSM-KVS

As discussed in Section 2.1, all LSM-KVS data is stored in different
file types. By intercepting I/O operations at the engine layer and ap-
plying encryption or decryption before persistence, we can achieve
transparent data protection (i.e., the core LSM-KVS codebase re-
mains unchanged and unaware of encryption/decryption). This
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design is particularly effective in controlled environments, such
as monolithic or distributed deployments [35, 38, 81], where the
LSM-KVS instances are the only applications on the servers.
4.1 Design Overview
To enable transparent encryption, all file I/O, such as WAL, SST,
Manifest, and configuration file writes/reads, is intercepted. Data is
encrypted before being stored via the underlying file system (e.g.,
EXT4 or XFS), and decrypted on demand during access. A user-
provided DEK, supplied at LSM-KVS startup, is kept solely in mem-
ory to ensure low-latency DEK access for encryption/decryption
and restrict DEK access to the active LSM-KVS session. In dis-
tributed environments, KDS like Kerberos [66] or Macaroons [23]
can securely supply the DEK to all LSM-KVS instances.

The LSM-KVS core is agnostic to the encryption layer, requiring
modifications only for systems using direct I/O (e.g., RocksDB) to
ensure block alignment. Existing LSM-KVS interfaces supporting
block alignment can address this need, maintaining compatibility
with direct I/O. As a result, LSM-KVS operations like WAL writes,
compactions, and flushes remain unchanged, with encryption uni-
formly applied before persisting data. This design ensures data
confidentiality and safegaurds sensitive information from unautho-
rized access with minimal impact to LSM-KVS performance.
4.2 Tradeoff Discussion
The design that encrypts all persisted data using a single DEK is sim-
ple and transparent as it avoids complexities and added overheads
of managing a unique DEK for every file. However, it comes with
limitations and trade-offs for employing DEK-handling practices
such as distinct DEKs per file, strong access control, and regular
DEK rotation (detailed in Section 2.2).

The encryption for every write I/O relies on the I/O calls rather
than the write path of LSM-KVS. The indiscriminate encryption dis-
allows using unique DEKs for different files and forces using a single
DEK. With a single DEK, any user with DEK access can retrieve
data from any file. Additionally, if a DEK compromise occurs, the
entire LSM-KVS data becomes vulnerable until a new secure DEK
is circulated and all files are re-encrypted. This is a time-intensive
process, increasing the system’s exposure to potential attacks dur-
ing the re-encryption window. Furthermore, re-encrypting all files
is a large-scale operation that is I/O-intensive and impacts system
availability. These trade-offs between simplicity and limitations in
security and availability necessitate careful deliberation.
4.3 Considerations for DS Implementation
This instance-level encryption design is effective in controlled en-
vironments where the LSM-KVS is the only application (such as
monolithic or distributed setups) and can be extended to a disaggre-
gated storage (DS) setup by leveraging a KDS to securely distribute
the DEK to different servers. However, if the same physical servers
are shared among multiple applications and users, there is a sig-
nificantly higher risk of unauthorized access to data or external
attackers who might gain system access through other users. In
such scenarios, implementation of DEK-handling practices, such as
unique DEKs per file and DEK rotation, is important to limit data
exposure in case of DEK compromise or a quick response.

The instance-level design is effective in controlled environments.
However, it does not scale well for modern DS deployments where
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Figure 6: Design Overview for SHIELD.

availability and security must not be compromised. A more robust
solution that addresses the challenges of LSM-KVS in DS environ-
ments, such as more granular key management, non-disruptive
DEK rotation, and effective access control, is essential.

5 SHIELD: Embedding Encryption in
Write-Path of LSM-KVS in DS

We discussed how DEK handling practices of unique DEKs per file
and regular DEK rotation enhance confidentiality guarantees in Sec-
tion 2.2. While the instance-level encryption design can implement
these practices, they are not necessary for controlled environments
like in monolith or distributed setups. This section details the design
of SHIELD, our solution that embeds DEK-handling practices into
the LSM-KVS for disaggregated storage (DS) deployments while
being compatible with monolithic deployments and sidestepping
the encryption overhead of WAL-writes.

5.1 Overview of SHIELD Design
Integrating DEK-handling practices involves additional tasks and
processes to request new DEKs and regularly rotate them. To mini-
mize the overhead, SHIELD embeds these practices into the LSM-
KVS. As shown in Figure 6, every time a critical file (SST, WAL, or
Manifest) is created, a new DEK is requested from the KDS. For
WAL-writes and flushes, encryption happens at the last stage to not
interfere with theminimal processing and the self-sortingmemtable
structures, respectively. For compaction, encryption is done right
after creating the SST file block to enable multi-threaded encryp-
tion. Additionally, the use of a new DEK on every file creation
facilitates DEK rotation by compaction. For every data compaction,
KV-pairs are re-encrypted using a new DEK. To reduce network
latency, SHIELD implements a secure local cache for DEKs, pro-
tected by a user-provided passkey, which enables fast access to
keys on database restarts (Section 5.2). Further, to sidestep the per-
formance overhead of encrypting every WAL write, we design a
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buffering solution that amortizes the cost of encrypting small KV-
pairs (Section 5.3). Finally, SHIELD embeds a DEK-Identifier in each
file metadata. Using this DEK-ID, a server can request the DEK from
the KDS without relying on centralized control (Section 5.4).

To achieve on-disk data confidentiality for DS setups, SHIELD
emphasizes flexibility by leveraging metadata-based DEK sharing
and its secure cache that allows efficient key management across in-
stances, allowing setups like offloaded compaction to work. Further,
the use of a decentralized KDS allows SHIELD to be used with multi-
ple instances in a read-only instance mechanism. SHIELD is tightly
integrated with LSM-KVS, leveraging compaction for efficient DEK
rotation and batching WAL writes to minimize encryption over-
head. While per-file DEK usage could apply to other storage sys-
tems, SHIELD’s reliance on LSM-KVS-specific mechanisms—like
compaction-driven re-encryption andWAL buffering—makes direct
adoption difficult. Systems requiring in-place file updates may face
bottlenecks from repeated decryption and re-encryption, with fre-
quent small writes further exacerbating overhead due to encryption
initialization costs.

5.2 Embedding Encryption into LSM-KVS
SHIELD embeds encryption in the write path by leveraging LSM-
KVS design knowledge to minimize the performance overheads
from DEK-handling practices. SHIELD implements unique DEKs
for each file with DEK rotations and designs a solution for highly
available and decentralized key distribution with secure caching.
Encryption in the Write Path. Three processes are responsible
for persisting client data to the WAL and SST files in LSM-KVS:
WAL-write, Flush, and Compaction. SHIELD embeds the encryption
in the write path of these processes.

WAL-writes are foreground operations that persist every client
write operation immediately to ensure crash consistency. Data is
persisted with minimal processing to ensure a high write through-
put, leading to SHIELD implementing encryption right before per-
sistence. SHIELD employs a buffer that collects and encrypts multi-
ple WAL-writes to get around the bottleneck discussed in Section
3.2 for encrypting individual WAL-writes. We discuss this optimiza-
tion in more detail in Section 5.3.

Flush is a background process that persists memtables to SST
files. Memtables are in-memory self-sorting data structures (e.g.,
SkipLists) that keep updating until the last write when they reach
the threshold. Preemptive data encryption could cause data to be
re-encrypted if a write causes the entire data structure to update. To
avoid this, SHIELD performs encryption just before data persistence
for every flush operation.

Compaction is a background process responsible for up to 90%
of I/Os for LSM-KVS [93]. It merges and sorts key-value pairs into
ordered blocks of a pre-configured size (e.g., 4096 bytes by default
in RocksDB), which are then persisted as SST files. Unlike instance-
level encryption that encrypts all data at once, SHIELD performs
encryption in user-configurable-sized chunks for finer-grained con-
trol. SHIELD further optimizes the chunk-based scheme with multi-
threaded encryption during compaction, increasing resource usage
but minimizing encryption overhead when handling large chunks.

The compaction style in an LSM-KVS significantly impacts en-
cryption efficiency. Leveled compaction results in frequent writes,
increasing encryption overhead, while tiered compaction involves

fewer, larger I/O operations. SHIELD’s use of metadata-driven DEK
handling and chunk-based encryption allows it to adapt to dif-
ferent compaction styles with minimal performance degradation,
balancing encryption overhead and I/O efficiency.
Embedding DEK-Handling Practices. SHIELD uses a unique
DEK for each file with client data (WAL and SST) in LSM-KVS, by
requesting a new DEK from a KDS whenever any write process
creates a new file. This design introduces a new overhead of request-
ing a new DEK for every file creation, compared to the single DEK
request for the instance level design from Section 4. However, the
design is effective in limiting the confidentiality breach by allowing
faster recovery from DEK compromises. If an attacker compromises
an active DEK, the exposure risk is limited to a single file, not the
entire KVS. Additionally, DEK rotation is much faster as it is only
required for a single file, contrary to re-encrypting all files as for a
single DEK implementation.

SHEILD enables DEK rotations by assigning new DEKs to files
during compaction. As files of LSM-KVS are append-only and im-
mutable, copies of the same KV-pair are collected over multiple
files. Eventually, compaction merges and sorts these files, creating a
new set of files containing only the most recent values for duplicate
keys. A KV-pair using an older DEK (DEK-1) will switch to a newer
DEK (DEK-2) during compaction. Integrating DEK assignments into
compaction allows DEK rotation to become a built-in advantage
that enhances security without incurring additional overhead. The
integration of DEK-rotation with compaction allows no additional
DEK-rotation overhead, however, it also limits SHIELD implemen-
tation to storage systems with a compaction-like implementation.
Decentralized Key Distribution Service. A Key Distribution
Service (KDS) is used for issuing, managing, and revoking cryp-
tographic keys [61, 62]. Various services, including PKI [24], Ker-
beros [66], Macaroons [23], and the Secure Swarm Toolkit [52],
cater to different needs. We design SHIELD to integrate with a
KDS that meets two criteria: (1) Decentralized implementation for
high availability, and (2) Provisioning and requiring a DEK with a
unique Identifier (DEK-ID) to allow SHIELD to embed DEK-IDs in
LSM-KVS file metadata (discussed in Section 5.4).
On-Demand Key Retrieval with Secure Caching. The DEK is
stored in memory as part of the LSM-KVS metadata while the LSM-
KVS instance is running. However, upon restarting the database or
recovering from a crash, making repeated requests for all relevant
DEKs from the KDS introduces unnecessary latency. To avoid this,
SHIELD uses a secure local disk cache to store previously used DEKs.
These DEKs are encrypted with a local server password, which can
be user-defined or controlled by the KDS. This server password is
never persisted to disk and is required only when starting the LSM-
KVS service. Multiple LSM-KVS instances (similarly to ZippyDB
deployment [6]) on the same server can share this cache as long
as the server password is provided to the other instances, thus
eliminating additional network requests to the KDS and reducing
network latency for DEK retrieval if the KDS is on a different server.

During DEK rotation, the secure cache is updated with the new
DEK, storing it after securing it with the password. The DEK in
the cache corresponding to the older files is deleted in conjunction
with the SST files by SHIELD. This process ensures that only the
current DEK is available for access.
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5.3 Performance Optimizations for WAL
Section 3.2 discusses the encryption initialization overhead is criti-
cal on multiple small-sized writes. For a foreground process like the
WAL that performs write synchronously, for smaller KV-pair sizes,
encrypting each small WAL write can introduce significant perfor-
mance slowdowns in LSM-KVS. To mitigate this, SHIELD leverages
the understanding of the buffered I/O interface used byWAL-writes,
and proposes a design that shifts data persistency guarantees from
the OS to the LSM-KVS using an LSM-KVS managed buffer.
Buffered I/O Implementation in WAL. Disabling the WAL im-
proves performance but compromises crash consistency, which is
unacceptable. Popular LSM-KVS like LevelDB and RocksDB im-
plement the WAL using the buffered I/O interface, allowing the
OS to manage an in-memory buffer that aggregates multiple write
operations before flushing them to disk, enhancing performance.
This interface guarantees crash consistency [4] if the LSM-KVS
process crashes. However, this crash consistency guarantee does
not extend to data persistency, as any data present in the OS buffer
will be lost in the event of a system crash.
Performance and Data Persistency Trade-Off with Buffered
WAL. A naive approach to balance the performance and data per-
sistency in LSM-KVS is to implement a secondary WAL alongside
the primary WAL. As writes persist in the primary WAL, the sec-
ondary WAL asynchronously receives encrypted writes. Once both
WALs are full, the primary WAL is deleted, and the secondary WAL
replaces it. In a crash, some writes may not have persisted to the
secondary WAL, and the plaintext WAL is used for recovery of
the active log. In contrast, the encrypted secondary WAL handles
recovery for immutable logs. Although this design upholds data
persistency, it exposes unencrypted data in the primary WAL, com-
promising security and introducing overhead from CPU, memory,
and storage due to the dual WAL management and encryption.

To achieve robust security with high performance, SHIELD uses
an application-controlled buffer for WAL writes. Instead of relying
on the OS, SHIELD shifts persistency control to the application,
temporarily storing writes in memory and encrypting them before
persisting once a user-set threshold is reached. By amortizing en-
cryption and I/O costs over a larger batch of data, this approach
significantly reduces the overhead of write operations compared
to the naive design. SHIELD ensures that KV-pairs are encrypted
within the same buffer, preventing partial data loss during crashes
and supporting proper WAL replay for memtable recovery.

SHIELD introduces a trade-off in data persistency: any unper-
sisted data in the buffer is lost if the LSM-KVS crashes, shifting
the failure risk from OS crashes to application-level failures. How-
ever, SHIELD guarantees that only encrypted data is written to
storage, fully addressing the threat model’s security requirements.
While this approach incurs slight memory overhead (i.e., 512-byte
buffer) for the buffer and adds computational costs for encryption, it
provides a more efficient and secure alternative to the naive design.

5.4 Secure DEK Sharing in DS
In LSM-KVS that are deployed in DS, tasks like compaction can be
offloaded to separate servers [22, 36, 44, 93], and network I/O over-
head can mask the performance impact of encryption. For example,
when new SST files are created on remote storage servers during

offloaded compaction, the network I/O latency can absorb much
of the encryption overhead, making it less noticeable. However,
in such systems, remote servers also need access to the DEKs to
perform operations like compaction or SST file migration.

A naive approach to managing encryption in such setups is to
have the KDS handle the mapping between files and DEKs. How-
ever, this introduces latency for DEK provisioning and adds the
complexity of the KDS’s responsibilities. In cases like offloaded com-
paction (e.g., implemented in Disaggregated-RocksDB [36]), where
temporary filenames are assigned during new SST file creation
and compaction results updated in the LSM-KVS metadata, this
approach can lead to mismatches between the DEK and the final
file name. Fixing these mismatches would require extra operations,
increasing both complexity and latency. Moreover, it introduces
availability risks, as the KDS could become a single point of failure,
exacerbating potential performance bottlenecks.
Metadata-Enabled DEK Sharing. SHIELD’s design addresses the
complexities of mapping files with DEKs by incorporating a DEK
identifier (DEK-ID) into the metadata of WAL and SST files. In an
LSM-KVS, metadata is read before data blocks to identify any oper-
ations that need inversion (e.g., compression). SHIELD leverages
this process, allowing the LSM-KVS to preemptively request the
necessary DEK from the KDS using the embedded DEK-ID. This
approach simplifies the design by enabling decentralized DEK man-
agement, making the system more resilient to failures. Such DEK
management allows SHIELD to support different KDS policies, such
as per-server sharing, per-file isolation, or hierarchical derivation,
by relying only on the DEK-ID for retrieval, making it agnostic to
how the KDS manages and distributes keys as long as it can resolve
the DEK-ID to a valid key.

However, since the metadata is stored in plaintext, the DEK-
ID is exposed to anyone with server access, including potential
attackers. If an attacker gains access, they could read the DEK-ID,
request a newDEK from the KDS, and access client data. Tomitigate
this, SHIELD relies on the KDS to employ two safeguards: server
authorization and one-time DEK provisioning. First, the KDS only
allows authorized servers to request DEKs. If a server is breached,
the KDS can revoke its authorization to block further DEK requests.
Second, the KDS enforces one-time DEK provisioning, denying any
attempt to request a DEK that has already been issued, preventing
retrieval even if the DEK-ID is exposed.

5.5 Security Guarantees

With the design as mentioned above, SHIELD provides embedding
for encryption with DEK-handling practices in LSM-KVS for dif-
ferent flexible deployments. This section briefly discusses some
scenarios and how SHIELD handles them.

Scenario 1 - Storage Media Compromise: If the storage media
(e.g., HDD, SSD) is physically stolen or its data is dumped over
the network by an attacker, data is at risk of exposure to the bad
actor. SHIELD’s integration of robust encryption algorithms for all
on-storage files guarantees data confidentiality.

Scenario 2 - Unauthorized Access: Data should not be compro-
mised if an attacker with filesystem access or other server user tries
to access on-disk data. Performing encryption on the LSM-KVS
level safeguards data from such threats.
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Scenario 3 - DEK compromise: In the even more challenging sce-
nario of a DEK compromise, detected or undetected, a strong at-
tacker with access to the DEK and the filesystem can decrypt the
associated data. The compromised DEK can be replaced if detected,
and the file will be re-encrypted with a new DEK. In the case of
undetected compromise, SHIELD’s design minimizes data exposure
by restricting access to only the file associated with the compro-
mised DEK. Moreover, if the file has already been compacted, the
DEK becomes ineffective, preventing any further data leakage.

5.6 Case Study: Offloaded Compaction in DS
In DS, network I/O latency can hide the encryption overhead. How-
ever, in setups like offloaded compaction [22, 36, 93], where SST files
are read and written across different servers, remote servers need
access to DEKs for encryption and decryption. SHIELD handles this
efficiently using a metadata-driven approach. When creating new
SST files, remote servers read the metadata to identify the required
DEK, request it from the decentralized KDS, and securely cache
it on disk, allowing the compaction process to proceed without
repeated requests. SHIELD’s decentralized DEK management and
caching system reduces latency and enhances resilience by avoiding
a single point of failure.

6 Implementation and Evaluations
We implement our two designs, Instance-level Encryption (EncFS)
and SHIELD, based on RocksDB (v8.8.1) [80], a widely used LSM-
KVS. The source code is available on GitHub [85]. We conduct
comprehensive evaluations to answer the following questions:
• What are the performance overhead of EncFS and SHIELD com-

pared with RocksDB under Micro (RandomWrite, RandomRead)
and Macro (YCSB, Mixgraph) workloads in a monolithic setup?

• What are the impacts of different design components of SHIELD
evaluated in the detailed breakdown analysis?

• How does SHIELD perform in DS deployments?

6.1 Experimental Setup
For our evaluation, we refer to an unmodified, out-of-box RocksDB
setup as unencrypted RocksDB. When using the version of RocksDB
that integrates EncFS, we address it as EncFS; and when using
SHIELD, we address it as SHIELD. Finally, theWAL Optimization
(WAL-Buf referred to in the evaluation is the WAL optimization
proposed in Section 5.3.
Hardware Setup.Our experimental evaluation utilizes two servers:
Server 1 with Intel Xeon Gold 6330 CPU @ 2.00GHz, 256 GiB of
RAM, a 3.84TB SAS SSD running Ubuntu 22.04.3 LTS, and Server 2
with Intel Xeon Silver 4310 CPU@ 2.10GHz, 64 GiB of RAM, an 8TB
SATAHDD storage running Ubuntu 20.04.6 LTS. To ensure minimal
latency in DEK provisioning, we deploy SSToolkit on Server 1,
which always handles client communication. Server 1 and Server 2
are connected via a network switch with a 1Gbps link that facilitates
communication.

In the Monolithic setup, we utilize server 1 to handle both com-
puting and storage. This server’s more powerful CPU and high-
performance SAS SSD allow us to minimize I/O and computational
bottlenecks, reflecting a tightly coupled architecture where com-
pute and storage reside on the same node. In the Disaggregated
Storage setup, server 1 is repurposed as the compute servers, while

server 2 acts as the disaggregated storage utilizing HDFS [1]. Both
servers are on the same rack and connected to a gigabit connection
switch. We further implement the offloaded compaction (the same
as Disaggregated-RocksDB [36] and CaaS-LSM [93]) at the storage
servers to demonstrate the compatibility of SHIELD for LSM-KVS
optimizations for DS.
Key Distribution Service. To be compatible with SHIELD, a KDS
has to be (1) decentralized for DS implementations and (2) Provide
access control and unique DEK identifiers. We considered four
options, PKI [24], Kerberos [66], Secure Swarm Toolkit [52], and
Macaroons [23]. We choose the open-source Secure Swarm Toolkit
(SSToolkit) for its relatively lightweight and highly customizable C
API [50, 51] with a decentralized implementation.
Encryption Algorithm Selection. SHIELD is flexible and allows
the implementation of different encryption algorithms that the
KDS allows. We use AES, the industry-standard and fastest sym-
metric encryption algorithm, widely used for its high performance
and strong security [31]. We run 128-bit AES in CTR mode, which
provides robust encryption for data confidentiality while main-
taining a lightweight implementation to minimize performance
overhead [2, 76].
Workloads.Weuse different test cases from popular benchmarking
tools, including db_bench [37] (fillrandom, readrandom, readran-
domwriterandom, mixgraph) and YCSB [27] (A, B, C, D, E, F). All
pure write tests are conducted over 50 Million (M) KV-pairs unless
specified and all tests involving read over 10M KV-pairs. We utilize
direct I/O for compaction, reads, and flushes across all tests. Unless
specified, all parameters of LSM-KVS are the default as found in
db_bench (e.g. Key Size: 16 bytes, Value Size: 100 bytes, etc).

6.2 Evaluation for Monolith LSM-KVS
To effectively evaluate the overall performance implication in dif-
ferent scenarios, we utilize multiple tests from db_bench and YCSB.
We divide our tests into micro and macro benchmarks to evaluate
focused and real-world scenarios.
Micro Benchmarks. We use fillrandom, readrandom, and a set
of mixed read-and-write ratios tests on writerandomreadrandom
benchmark in db_bench to simulate situations of random writes,
random reads, and a mixed test. The random write tests are run
with 50M operations, and the other tests with 10M operations. Fig-
ure 7 and Figure 8 illustrate these results. For the random write
tests, when compared to unencrypted RocksDB, we observe a per-
formance degradation of 32.9% and 36.2% for EncFS and SHIELD,
respectively. This degradation is reduced to 16.6% and 19.4% when
comparing the solutions with the WAL buffer optimization. This is
the worst-case scenario for our designs, as in situations of reads,
the internal latency of LSM-KVS is high enough to hide any added
latency of decrypting data, as shown in the random read tests where
the performance degradation is within 1% of unencrypted RocksDB.
We also show different scenarios of a mixed read and write work-
load in Figure 8 where we observe a reduction in performance
overhead with the increasing ratio of reads until, eventually, there
is less than a 1% performance difference between our solutions and
unencrypted RocksDB.
Macro Benchmarks. We use two tests to evaluate more real-
world-like situations: Mixgraph (Figure 7) and YCSB (Figure 9).
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Mixgraph [26], is run with a preloaded database of 50M KV-pairs
followed by 10M operations run on it. YCSB [27], with much larger
value sizes (1KB compared to approx. 37 bytes for Mixgraph), is
run on a preloaded database with 10M operations followed by
1M operations. With real-world tests being a mixture of read and
write operations, we expect a smaller performance degradation and
observe the same for EncFS and SHIELD. Mixgraph shows a per-
formance overhead of 10% and 12.9% compared to an unencrypted
RocksDB, and YCSB has an overhead ranging from 2-15% and 1-23%
for EncFS and SHIELD. The least overhead (0% for SHIELD, <2% for
EncF) is observed in YCSB-D, a 95% read and 5% insert workload.

6.3 Sensitivity Analysis

Key-Value Pair Sizes. In Section 3.2, we discuss the cost of encryp-
tion and how it is amortized for larger chunks of data. This property
means that for larger KV-pair sizes, the differences between the
baseline solutions would slowly decrease. Figure 10 showcases this
as with value size increasing, all different test variations eventu-
ally converge. For the unbuffered solutions, small value sizes of 50
bytes, EncFS and SHIELD have an overhead of 31% and 35% against
unencrypted RocksDB, which decreases to 9% and 16% at value
sizes of 1000 bytes.
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Figure 11: Sensitivity to Writer Threads.

Writer Threads.RocksDB implements a pipelinedwriter [3], where
a single queue is maintained for all writers. In such a case, if the
write queue is already overwhelmed with a larger number of op-
erations, we would expect the WAL optimizations to prove to be
insufficient. To demonstrate this, we use 16 background jobs, en-
suring a sufficient amount is present to ensure the bottleneck lies
on the writer. Figure 11 demonstrates this as the impact of WAL
optimization (WAL-Buf) drops from 21.9% to 1.1% on average for
all implementations when using 8 writer threads. With increasing
writer threads, the performance of the WAL-Buf solutions con-
verges towards the non-optimized solutions, with the bottleneck
shifted from WAL writes to the write ingestion rate.
Background Threads. Flush and compaction are background pro-
cesses in LSM-KVS and can be responsible for over 90% of I/Os,
which by extension makes them responsible for over 90% of the
encryption. To isolate the impact of background threads, we fix the
number of writer threads to 4. Figure 12 shows results from our test
where we find that under limited resources (2 background jobs),
SHIELDwith aWAL buffer suffers with performance degradation of
6% compared to unencrypted RocksDB without a WAL buffer. How-
ever, as soon as enough resources are provided with 4 background
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Figure 14: Sensitivity to Buffer Sizes.

threads, SHIELD with the WAL buffer has a 10% performance uplift
compared to the unencrypted RocksDB variant.
Chunk Sizes and Encryption Threads. For compaction, SHIELD
encrypts data at the block level, enabling parallel encryption across
multiple blocks. Figure 13 illustrates the compaction time with
threaded encryption, comparing SHIELD against EncFS and un-
encrypted RocksDB. We observe that while initially, the cost of
compression is higher, with an increasing chunk of data being en-
crypted at the same time, the threading implementation of SHIELD
starts to steadily improve. We continue this test up to 2MB chunks,
where we observe faster compaction times when treating unen-
crypted RocksDB as our starting point.
Buffer Sizes. With larger buffer sizes, the encryption initialization
overhead will be amortized over more write operations. This is
similar to increasing value sizes, where the implementations con-
verge over time. Figure 14 demonstrates that with increasing buffer
sizes from 0 (no buffer) to 2048 bytes, the performance overhead
of encryption in EncFS (from 32% to 7%) and SHIELD (from 36% to
10%) decreases when compared to unencrypted RocksDB.
Compaction Policies. In LSM-KVS, such as RocksDB, changing
compaction policies can impact how the system performs for dif-
ferent workload scenarios. Considering the reliance of SHIELD
on compaction to trigger core tasks such as DEK-rotation, we test
SHIELD performance with offloaded compaction for different com-
paction policies (RocksDB’s leveled, universal, and FIFO policies)
under a 100% random write and random read workload with of-
floaded compaction turned on. Figure 15 demonstrates SHIELD can
perform consistently with a performance overhead varying from
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Figure 15: Different Compaction Policies.

Table 3: Read (R) and Write (W) I/O distribution (in GiB) for
Different Compaction Styles divided by Server, Operation,
and target Storage Media.

Server 1 Server 2
WAL-Write

(local storage)
Flush
(HDFS)

Compaction
(HDFS)

Compaction
(HDFS)

Level Read N/A N/A 0.09 GiB 15.24 GiB
Write 6.1 GiB 5.61 GiB 0 14.05 GiB

Universal Read N/A N/A 0.09 GiB 13.75 GiB
Write 6.1 GiB 5.66 GiB 0 13.75 GiB

FIFO Read N/A N/A 0 0
Write 6.1 GiB 5.60 GiB 0 0
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Figure 16: Impact of KDS Latency.

0-40% in random write (fillrandom) tests and 0-11% with random
read (readrandom) tests compared to unencrypted RocksDB across
different compaction policies. We do not include the readrandom re-
sults of FIFO compaction owing to KV-pairs written earlier deleted
by FIFO, hence making the reads fail and give a skewed value (ap-
prox. 2.5M ops/sec). We also provide supplementary information
about SHIELD’s average I/O distribution for different compaction
styles in Table 3, finding that the compute and compaction servers
generate I/O operations to HDFS at a ratio of approximately 1:5.
KDS Latency. The DEK distribution policy and latency both im-
pact SHIELD performance. In this paper, we use SSToolkit, which
supports and utilizes the policy of sending one key per request. To
evaluate SHIELD under different KDS latency conditions, we syn-
thetically place delays in the KDS and test SHIELD in an offloaded
compaction setting.We find that SSToolkit, on average, takes 2750𝜇s
to generate and send a DEK to SHIELD. Meanwhile, the latency
for an intra-datacenter round-trip is 500𝜇s [7]. The difference in
latencies indicates a minimal impact from placing KDS on different
servers and, instead, a more profound impact from changing the
KDS policies. As illustrated in Figure 16, we find SHIELD to have
similar performance as the KDS latency increases with a maximum
difference of 10% in throughput to 6% in p99 latency.
Increasing Dataset Sizes.We stress-test the proposed solution by
running SHIELD in a disaggregated storage setup under larger and
longer running tests. We set the key and value size of 16 and 240
bytes, respectively, and ran evaluations for datasets ranging from
50M KV-Pairs (approx. 10 GB in size) to 1000M KV-Pairs (approx.
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Figure 17: Increasing Dataset sizes.
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Figure 18: Sensitivity to different CPUCores, Memory (RAM),
and Network Bandwidth (B/W) configurations.

200 GB in size). We find SHIELD consistently has a performance
overhead of less than 10%.
CPU, Memory and Network Bandwidth. The amount of re-
sources provided to SHIELD can impact the performance profoundly.
To test this, SHIELD is used in offloaded compaction setup; we uti-
lize Linux cgroups to control system CPU and memory resources
and TC for network bandwidth limitations that are provided to
the setup. As illustrated in Figure 18, we find SHIELD to be least
impacted by CPU andMemory variations and the system to be most
impacted (throughput improvement of approx. 77%) by increasing
network bandwidth, indicating our system bottleneck to be with
the bandwidth, and SHIELD able to perform consistently with a
maximum 20% overhead with limited system resources.

6.4 Evaluation for LSM-KVS in DS
We use two different setups to evaluate our solution: 1. Disaggre-
gated Storage where our solution is deployed on one server and
connected using the RocksDB-HDFS plugin to an HDFS deploy-
ment (pseudo-distributed mode) running on a second server, and
2. Offloaded Compaction, where we build on top of the disaggre-
gated storage solution by also deploying an offloaded compaction
implementation [36, 93] on the second server where HDFS has
been deployed. We notably exclude our EncFS solution, which is
designed for monolithic setups and is not compatible with the HDFS
plugin implementation.
Disaggregated Storage. Figures 19, 20, and 21 show the same
set of micro and macro benchmarks as the monolithic tests. The
increased network latency significantly narrows the performance
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Figure 19: Baseline Results with Disaggregated Storage.
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YC
SB

-A
YC

SB
-B
YC

SB
-C

YC
SB

-D
YC

SB
-E
YC

SB
-F

0

2000

Th
ro

ug
hp

ut
 (o

ps
/s

)

YC
SB

-A
YC

SB
-B
YC

SB
-C

YC
SB

-D
YC

SB
-E
YC

SB
-F

0

20000

p9
9 

(m
s)

Unencrypted RocksDB
Unencrypted RocksDB + WAL-Buf

SHIELD
SHIELD + WAL-Buf

Figure 21: YCSB Results with Disaggregated Storage

gap in the random writes test (fillrandom) to 5% between SHIELD
and unencrypted RocksDB even without the consideration of the
WAL buffer. In the other micro tests with different read and write
ratios (Figure 20), the performance disparity ranges from 6-14%,
which is an improvement over themonolith structure. For themacro
benchmarks, the performance variances are 8% (YCSB average) and
10% (Mixgraph), which are consistent with expectations due to the
additional network latency.
OffloadedCompaction. Figures 22, 23, and 24 show the same suite
of micro and macro benchmarks as we do for the monolith tests.
The offloaded compaction test suite aims to showcase the system’s
capability in an environment where DEKs are retrieved over the
network to demonstrate the efficacy of our metadata-embedded
DEK-ID solution. The performance disparity for the fillrandom tests
is 17% between SHIELD and the unencrypted RocksDB solutions.
Regarding the macro benchmarks, the performance variances are
4% (YCSB average) and 8.3% (Mixgraph), aligning them with our
expectations.

7 Related Work
Secure Datastores. Encrypted databases like CryptDB [74, 75],
Monomi [89], Seabed [70], Arx [73], TrustedDB [17], and DJoin [64]
protect data confidentiality by encrypting data and processing
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Figure 22: Baseline Results with Offloaded Compaction.
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Figure 23: Throughput and P99 Latency for Different Read
and Write Ratios with Offloaded Compaction.
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Figure 24: YCSB Results with Offloaded Compaction.

queries over ciphertext using techniques such as homomorphic
encryption, secure multi-party computation, or trusted hardware.
However, unlike these systems that focus on monolithic databases,
SHIELD offers a scalable and flexible design that is suitable for
LSM-KVS in disaggregated storage settings. MariaDB [60] supports
encryption for data at rest employing a key management plugin,
also supporting key rotation. However, MariaDB is a relational
database and does not support disaggregated setups.
Secure Distributed Datastores. Several distributed file systems
and databases, including HDFS, GlusterFS [41], and Cassandra [82],
provide high throughput and support for authentication and trans-
port encryption (via TLS) between nodes. However, they lack built-
in encryption for data at rest. HDFS [11, 12, 87] and JuiceFS [48]
support encryption for data both in transit and at rest. However,
JuiceFS does not support key rotation and per-file encryption. HDFS
supports an encryption zone, a special directory that is encrypted,
and employs a Key Management Server to manage encryption keys.
However, SHIELD provides more granular access control for per-file
encryption and employs an integrated encryption and key man-
agement solution for LSM-KVS. Tectonic [69] also supports access
control but still lacks encryption for data at rest. InterPlanetary
File System (IPFS) [20], a peer-to-peer highly decentralized storage,

only supports transport encryption, not encryption for the data by
default [45] although there have been attempts [18, 47] to provide
encryption and access control for the data stored in IPFS.
Secure Key-Value Stores. EncKV [94], Yuan et al. [95], and Agar-
wal and Kamara [8] propose an encrypted key-value store (KVS)
that supports secure, efficient query processing leveraging search-
able symmetric encryption. However, their approaches target SQL
databases and do not address performance overhead associated with
frequent small encryption calls. SHIELD specifically targets LSM-
KVS and addresses the performance challenges of small atomic
writes performed by WAL employing buffered WAL write to mini-
mize overhead while maintaining data confidentiality.

Avocado [15] and ShieldStore [54] both leverage trusted exe-
cution environments (TEEs) to enhance in-memory security in
untrusted environments. Avocado focuses on distributed storage
and consistency across a network, and ShieldStore optimizes mem-
ory management and throughput for in-memory KVS. These ap-
proaches rely on specific hardware for TEE implementation and are
not designed for disaggregated data or persistent data in LSM-KVS.
SHIELD provides a scalable and decentralized solution that does
not rely on specialized hardware, enabling LSM-KVS deployments
in monolithic and disaggregated storage.
Secure LSM-KVS. Kim and Vetter [53] integrate data compression
and encryption into high-performance computing LSM-KVS to en-
hance storage efficiency, performance, and security. However, their
work is concentrated on data compression and does not address
challenges for embedding DEK handling practices, flexible deploy-
ments for disaggregated deployments, and encryption overhead
from encrypting every WAL write. SHIELD addresses these chal-
lenges, achieving data confidentiality for data at rest in LSM-KVS.

Other studies focus on in-memory data protection by leveraging
TEEs. SPEICHER [16] enforces strong security and data freshness,
PLDB [84] reduces encryption overhead by reducing the interface
calls through the TEE, directly storing encrypted data on the disk.
Li et al. [55] proposes an authenticated data structure by digesting
individual LSM tree levels. All three solutions heavily rely on using
a single DEK on TEEs (specifically leveraging Intel SGX [29, 30]). In
contrast, SHIELD focuses on persistent data protection in LSM-KVS,
embeds encryption with DEK-handling practices into the LSM-KVS
architecture, and does not necessitate specialized hardware. The
non-reliance on hardware for SHIELD allows other databases and
KV-stores that share a similar design for file persistence (e.g., log-
structured hash-based key-value stores like BloomStore [59] or
FlashStore [33]) to leverage the SHIELD design.

8 Conclusion and Future Work

In this paper, we presented SHIELD, a novel design that secures data
confidentiality for persistent data in LSM-KVSwhileminimizing the
encryption overhead. By embedding DEK-handling practices into
both monolithic and disaggregated storage, SHIELD ensures strong
encryption practices with minimal performance impact, incurring a
maximum of 36% overhead in monolithic and 15% in disaggregated
setups compared to unencrypted RocksDB. This work secures the
persistent storage layer of LSM-KVS, opening several avenues for
future research on extending encryption to volatile components like
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in-memory caches and exploring advanced techniques such as ho-
momorphic encryption for secure, direct computation on encrypted
data.
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